Skip to main content
Log in

Amphoteric-like refraction in a two-dimensional photonic crystal

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

High-index contrast photonic crystals possess an intricate photonic band structure that is responsible for surprising phenomena as the surperprism effect, self-collimation, power splitting or negative refraction. Recently, it was reported that at the interface between an isotropic medium and a uniaxial crystal (or between two uniaxial crystals) a phenomenon known as amphoteric refraction, that is, positive as well as negative refraction, can take place. By means of a equifrequency contours analysis and finite-difference time-domain simulations, we show that a two dimensional photonic crystal can also present amphoteric refraction by properly choosing the lattice orientation and the termination. However, total transmission is difficult to achieve because a Bloch mode is excited inside the photonic crystal and the coupling efficiency from this mode to an external plane wave is lower than one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  PubMed  Google Scholar 

  2. M. Notomi, Phys. Rev. B 62, 10696 (2000)

    Article  Google Scholar 

  3. S. Lin, V.M. Hietala, L. Wang, E.D. Jones, Opt. Lett. 21, 1771 (1996)

    Google Scholar 

  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999)

    Article  Google Scholar 

  5. Y. Luo, W. Zhang, Y. Huang, J. Zhao, J. Peng, Opt. Lett. 29, 2920 (2004)

    Article  PubMed  Google Scholar 

  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, Phys. Rev. B 58, 10096 (1998)

    Article  Google Scholar 

  7. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature (London) 423, 604 (2003)

    Article  Google Scholar 

  8. D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).

    Article  PubMed  Google Scholar 

  9. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  PubMed  Google Scholar 

  10. Y. Zhang, B. Fluegel, A. Mascarenhas, Phys. Rev. Lett. 91, 157404 (2003)

    Article  PubMed  Google Scholar 

  11. Z. Liu, Z. Lin, S.T. Chui, Phys. Rev. B 69, 115402 (2004)

    Article  Google Scholar 

  12. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  PubMed  Google Scholar 

  13. A. Martínez, J. Martí, Phys. Rev. B 71 (2005)

  14. A. Taflove, Computational Electrodynamics—The Finite Difference Time-Domain Method(Artech House, Boston, 1995); J.P. Berenger, J. Comput. Phys. 114, 185 (1994)

  15. M. Qiu, L. Thylén, M. Swillo, B. Jaskorzynska, IEEE J. Sel. Top. Quantum Electron. 9, 106 (2003)

    Article  Google Scholar 

  16. Z. Ruan, M. Qiu, S. Xiao, S. He, L. Thylén, Phys. Rev. B 71, 045111 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, A., Martí, J. Amphoteric-like refraction in a two-dimensional photonic crystal. Appl. Phys. B 81, 301–304 (2005). https://doi.org/10.1007/s00340-005-1848-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1848-8

PACS

Navigation