Skip to main content
Log in

Synthesis of few-layer graphene flakes by magnetically rotating arc plasma: effects of input power and feedstock injection position

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A magnetically rotating arc plasma system is used for the synthesis of graphene flakes by methane decomposition. Effects of input power and feedstock injection position on product microstructures are investigated. The morphology and composition of the products are characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction, etc. Results show amorphous spherical particles with a diameter in the range of 10–40 nm and graphene flakes with 1–20 layers are generated in the plasma process. The graphene flakes are produced under a high gas temperature and long thermal history, while the spherical particles are favored by the opposite conditions. As the gas temperature increases, the products change from spherical particles to graphene flakes; moreover, the graphene flakes have larger size, fewer layers, straighter graphitic layers and better crystalline structure under a higher gas temperature. Emission spectral analysis indicates there exist lots of H atoms when the feedstock gas has a long thermal history in the plasma, revealing the importance of H atoms in the graphene flake formation. It is suggested that a high temperature and rich H environment can suppress the formation of curved or closed structures, leading to the production of graphene flakes with high crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    ADS  Google Scholar 

  2. R. Kumar, E. Joanni, R.K. Singh, D.P. Singh, S.A. Moshkalev, Prog. Energy Combust. Sci. 67, 115 (2018)

    Google Scholar 

  3. R. Kumar, R. Matsuo, K. Kishida, M.M. Abdel-Galeil, Y. Suda, A. Matsuda, Electrochim. Acta 303, 246 (2019)

    Google Scholar 

  4. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019)

    Google Scholar 

  5. R. Kumar, R.K. Singh, D.P. Singh, A.R. Vaz, R.R. Yadav, C.S. Rout, S.A. Moshkalev, Mater. Des. 122, 110 (2017)

    Google Scholar 

  6. R. Kumar, R.K. Singh, A.R. Vaz, R.M. Yadav, C.S. Rout, S.A. Moshkalev, New J. Chem. 41, 8431 (2017)

    Google Scholar 

  7. G.G. Jernigan, B.L. VanMil, J.L. Tedesco, J.G. Tischler, E.R. Glaser, A. Davidson III, P.M. Campbell, D.K. Gaskill, Nano Lett. 9, 2605 (2009)

    ADS  Google Scholar 

  8. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, Nat. Mater. 8, 203 (2009)

    ADS  Google Scholar 

  9. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2008)

    ADS  Google Scholar 

  10. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Nanotechnology 19, 305604 (2008)

    Google Scholar 

  11. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906 (2010)

    Google Scholar 

  12. K. Subrahmanyam, L. Panchakarla, A. Govindaraj, C. Rao, J. Phys. Chem. C 113, 4257 (2009)

    Google Scholar 

  13. R. Kumar, R.K. Singh, P.K. Dubey, R.M. Yadav, D.P. Singh, R. Tiwari, O. Srivastava, J. Nanopart. Res. 17, 24 (2015)

    ADS  Google Scholar 

  14. K.S. Kim, S.H. Hong, K.-S. Lee, W.T. Ju, IEEE Trans. Plasma Sci. 35, 434 (2007)

    ADS  Google Scholar 

  15. J. Kim, S.B. Heo, G.H. Gu, J.S. Suh, Nanotechnology 21, 095601 (2010)

    ADS  Google Scholar 

  16. M. Shavelkina, R. Amirov, I. Bilera, Mater. Today Proc. 5, 25956 (2018)

    Google Scholar 

  17. A. Dato, J. Mater. Res. 34, 214 (2019)

    ADS  Google Scholar 

  18. M. Moreno-Couranjou, M. Monthioux, J. Gonzalez-Aguilar, L. Fulcheri, Carbon 47, 2310 (2009)

    Google Scholar 

  19. J. Gonzalez-Aguilar, M. Moreno, L. Fulcheri, J. Phys. D Appl. Phys. 40, 2361 (2007)

    ADS  Google Scholar 

  20. M.W. Lee, H.-Y. Kim, H. Yoon, J. Kim, J.S. Suh, Carbon 106, 48 (2016)

    Google Scholar 

  21. A. Dato, M. Frenklach, New J. Phys. 12, 125013 (2010)

    ADS  Google Scholar 

  22. A. Dato, Z. Lee, K.-J. Jeon, R. Erni, V. Radmilovic, T.J. Richardson, M. Frenklach, Chem. Commun. 28, 6095 (2009)

    Google Scholar 

  23. E. Tatarova, J. Henriques, C. Luhrs, A. Dias, J. Phillips, M. Abrashev, C. Ferreira, Appl. Phys. Lett. 103, 134101 (2013)

    ADS  Google Scholar 

  24. E. Tatarova, A. Dias, J. Henriques, A.B. do Rego, A. Ferraria, M. Abrashev, C.C. Luhrs, J. Phillips, F. Dias, C. Ferreira, J. Phys. D. Appl. Phys. 47, 385501 (2014)

    Google Scholar 

  25. N. Bundaleska, D. Tsyganov, A. Dias, E. Felizardo, J. Henriques, F. Dias, M. Abrashev, J. Kissovski, E. Tatarova, Phys. Chem. Chem. Phys. 20, 13810 (2018)

    Google Scholar 

  26. C. Melero, R. Rincón, J. Muñoz, G. Zhang, S. Sun, A. Perez, O. Royuela, C. González-Gago, M. Calzada, Plasma Phys. Controlled Fusion 60, 014009 (2017)

    ADS  Google Scholar 

  27. R. Rincón, C. Melero, M. Jiménez, M. Calzada, Plasma Sources Sci. Technol. 24, 032005 (2015)

    ADS  Google Scholar 

  28. H. Zhang, T. Cao, Y. Cheng, Carbon 86, 38 (2015)

    Google Scholar 

  29. R. Pristavita, N.-Y. Mendoza-Gonzalez, J.-L. Meunier, D. Berk, Plasma Chem. Plasma Process. 30, 267 (2010)

    Google Scholar 

  30. R. Pristavita, N.-Y. Mendoza-Gonzalez, J.-L. Meunier, D. Berk, Plasma Chem. Plasma Process. 31, 851 (2011)

    Google Scholar 

  31. A. Mohanta, B. Lanfant, M. Asfaha, M. Leparoux, Appl. Phys. Lett. 110, 093109 (2017)

    ADS  Google Scholar 

  32. R. Pristavita, J.-L. Meunier, D. Berk, Plasma Chem. Plasma Process. 31, 393 (2011)

    Google Scholar 

  33. J.-L. Meunier, N.-Y. Mendoza-Gonzalez, R. Pristavita, D. Binny, D. Berk, Plasma Chem. Plasma Process. 34, 505 (2014)

    Google Scholar 

  34. A. Mohanta, B. Lanfant, M. Leparoux, Plasma Chem. Plasma Process. 39, 1161 (2019)

    Google Scholar 

  35. R. Amirov, M. Shavelkina, N. Alihanov, E. Shkolnikov, A. Tyuftyaev, N. Vorob’eva, J. Nanomater. 2015, 724508 (2015)

    Google Scholar 

  36. C. Wang, L. Sun, X. Dai, D. Li, X. Chen, W. Xia, W. Xia, Carbon 148, 394 (2019)

    Google Scholar 

  37. X. Chen, C. Wang, M. Song, J. Ma, T. Ye, W. Xia, Carbon 155, 521 (2019)

    Google Scholar 

  38. C. Wang, L. Sun, X. Chen, M. Song, W. Xia, Fuller. Nanotubes Carbon Nanostruct. 27, 498 (2019)

    ADS  Google Scholar 

  39. T. Li, C. Rehmet, Y. Cheng, Y. Jin, Y. Cheng, Plasma Chem. Plasma Process. 37, 1033 (2017)

    Google Scholar 

  40. W.D. Xia, L.C. Li, Y.H. Zhao, Q. Ma, B.H. Du, Q. Chen, L. Cheng, Appl. Phys. Lett. 88, 211501 (2006)

    ADS  Google Scholar 

  41. C. Wang, W.W. Li, X.N. Zhang, J. Zha, W.D. Xia, Chin. Phys. B 24, 065206 (2015)

    ADS  Google Scholar 

  42. C.L. Li, D.W. Xia, L.H. Zhou, P.Z. Zhou, B. Bai, Eur. Phys. J. D 47, 75 (2007)

    ADS  Google Scholar 

  43. F. Wang, R. Hong, Chem. Eng. J. 328, 1098 (2017)

    Google Scholar 

  44. F. Fabry, G. Flamant, L. Fulcheri, Chem. Eng. Sci. 56, 2123 (2001)

    Google Scholar 

  45. T. Zielinski, J. Kijenski, Compos. Part A Appl. Sci. Manuf. 36, 467 (2005)

    Google Scholar 

  46. C. Wang, Z. Lu, D. Li, W. Xia, W. Xia, Plasma Chem. Plasma Process. 38, 1223 (2018)

    Google Scholar 

  47. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 8, 2012 (2008)

    ADS  Google Scholar 

  48. R.J. Nemanich, S. Solin, Phys. Rev. B 20, 392 (1979)

    ADS  Google Scholar 

  49. T. Livneh, T.L. Haslett, M. Moskovits, Phys. Rev. B 66, 195110 (2002)

    ADS  Google Scholar 

  50. D. Sun, R. Hong, J. Liu, F. Wang, Y. Wang, Chem. Eng. J. 303, 217 (2016)

    Google Scholar 

  51. M. Pawlyta, J.-N. Rouzaud, S. Duber, Carbon 84, 479 (2015)

    Google Scholar 

  52. M. Singh, A. Sengupta, K. Zeller, G. Skoptsov, R.L. Vander Wal, Carbon 143, 802 (2019)

    Google Scholar 

  53. B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen, H. Song, J. Mater. Chem. A 4, 6472 (2016)

    Google Scholar 

  54. R. Whitesides, M. Frenklach, J. Phys. Chem. A 114, 689 (2009)

    Google Scholar 

  55. V. Gupta, Appl. Phys. Lett. 97, 56 (2010)

    Google Scholar 

  56. R. Kumar, R.K. Singh, P.K. Dubey, P. Kumar, R.S. Tiwari, I.K. Oh, J. Nanopart. Res. 15, 1847 (2013)

    ADS  Google Scholar 

  57. M. Frenklach, Phys. Chem. Chem. Phys. 4, 2028 (2002)

    Google Scholar 

  58. H. Wang, Proc. Combust. Inst. 33, 41 (2011)

    Google Scholar 

  59. C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 32, 247 (2006)

    Google Scholar 

  60. N. Morgan, M. Kraft, M. Balthasar, D. Wong, M. Frenklach, P. Mitchell, Proc. Combust. Inst. 31, 693 (2007)

    Google Scholar 

  61. K. Ono, M. Yanaka, S. Tanaka, Y. Saito, H. Aoki, O. Fukuda, T. Aoki, T. Yamaguchi, Chem. Eng. J. 200, 541 (2012)

    Google Scholar 

  62. S. Iordanova, I. Koleva, Spectrochim. Acta Part B 62, 344 (2007)

    ADS  Google Scholar 

  63. R. Yang, J. Zheng, W. Li, J. Qu, X. Li, J. Phys. D Appl. Phys. 44, 174015 (2011)

    ADS  Google Scholar 

  64. H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu, R. Zhan, Diam. Relat. Mater. 16, 675 (2007)

    ADS  Google Scholar 

  65. I. Denysenko, S. Xu, J. Long, P. Rutkevych, N. Azarenkov, K. Ostrikov, J. Appl. Phys. 95, 2713 (2004)

    ADS  Google Scholar 

  66. X. Wang, X. Lin, M. Mesleh, M. Jarrold, V. Dravid, J. Ketterson, R. Chang, J. Mater. Res. 10, 1977 (1995)

    ADS  Google Scholar 

  67. D. Zhang, K. Ye, Y. Yao, F. Liang, T. Qu, W. Ma, B. Yang, Y. Dai, T. Watanabe, Carbon 142, 278 (2019)

    Google Scholar 

  68. B. Qin, T. Zhang, H. Chen, Y. Ma, Carbon 102, 494 (2016)

    Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (Nos. 11705202, 11675177 and 11475174), Anhui Provincial Natural Science Foundation (No. 1808085MA12), Anhui Province Scientific and Technological Project (No. 1604a0902145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Xia.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Song, M., Chen, X. et al. Synthesis of few-layer graphene flakes by magnetically rotating arc plasma: effects of input power and feedstock injection position. Appl. Phys. A 126, 210 (2020). https://doi.org/10.1007/s00339-020-3399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3399-6

Keywords

Navigation