Skip to main content
Log in

Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of Nb addition on the microstructure and corrosion resistance of the as-rolled Ti-stabilized Fe-17Cr ferritic stainless steels were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, pitting tests, and electrochemical measurements. TiN precipitate tends to form in the microstructure of Ti-stabilized Fe-17Cr ferritic stainless steel. After 0.1 wt. % Nb addition, (Ti, Nb) (C, N) composite precipitates with MgO and Al2O3 core form in the microstructure. After adding 0.1 wt. % Nb, the corrosion rate of the Ti-stabilized Fe-17Cr ferritic stainless steel in FeCl3 solution is decreased significantly. The corrosion current densities decrease in HNO3, NaOH, and NaCl solutions, and the pitting corrosion potentials can be improved in NaCl solution for the Fe-17Cr ferritic stainless steel with 0.1 wt. % Nb addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.K. Kim, Y.H. Kim, J.S. Lee, K.Y. Kim, Effect of chromium content on intergranular corrosion and precipitation of Ti-stabilized ferritic stainless steels. Corros. Sci. 52, 1847–1852 (2010)

    Article  Google Scholar 

  2. S. Ningshen, M. Sakairi, K. Suzuki, S. Ukai, The surface characterization and corrosion resistance of 11% Cr ferritic/martensitic and 9–15 % Cr ODS steels for nuclear fuel reprocessing application. J. Solid State Electrochem. 18, 411–425 (2014)

    Article  Google Scholar 

  3. Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, X.Q. Lv, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion resistance of electron beam-welded duplex stainless steel. Corros. Sci. 141, 30–45 (2018)

    Article  Google Scholar 

  4. P. Erazmus-Vignal, V. Vignal, S. Saedlou, F. Krajcarz, Corrosion behaviour of sites containing (Cr, Fe)2N particles in thermally aged duplex stainless steel studied using capillary techniques, atomic force microscopy and potentiostatic pulse testing method. Corros. Sci. 99, 194–204 (2015)

    Article  Google Scholar 

  5. Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, J.L. Zhang, Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints. Appl. Surf. Sci. 394, 297–314 (2017)

    Article  ADS  Google Scholar 

  6. K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels. Mater. Sci. Eng. R 65, 39–104 (2009)

    Article  Google Scholar 

  7. J.M. Kim, H.W. Lee, Study for corrosion characteristics of ferritic stainless steel weld metal with respect to added contents of Ti and Nb. Metal Mater. Int. 20, 329–335 (2014)

    Article  ADS  Google Scholar 

  8. J.K. Sun, L. Sun, N.W. Dai, J. Li, Y.M. Jiang, Investigation on ultra-pure ferritic stainless steel 436L susceptibility to intergranular corrosion using optimised double loop electrochemical potentiokinetic reactivation method. Corros. Eng. Sci. Technol. 53, 574–581 (2018)

    Article  Google Scholar 

  9. J.K. Kim, Y.H. Kim, B.H. Lee, K.Y. Kim, New findings on intergranular corrosion mechanism of stabilized stainless steels. Electrochim. Acta. 56, 1701–1710 (2011)

    Article  Google Scholar 

  10. J.H. Park, J.K. Kim, B.H. Lee, S.S. Kim, K.Y. Kim, Three-dimensional atom probe analysis of intergranular segregation and precipitation behavior in Ti-Nb-stabilized low-Cr ferritic stainless steel. Scr. Mater. 68, 237–240 (2013)

    Article  Google Scholar 

  11. X. Li, Y. Ni, Y. Jiang, J. Li, L. Li, Intergranular corrosion of Low Cr ferritic stainless steel 429 evaluated by the optimized double loop electrochemical potentiokinetic reactivation test. Adv. Mater. Sci. Eng. 2015, 1–10 (2015)

    Google Scholar 

  12. H. Demiroren, Corrosion behavior of ferritic stainless steel alloyed with different amounts of niobium in hydrochloric acid solution. J. Appl. Electrochem. 39, 761–767 (2009)

    Article  Google Scholar 

  13. N.D. Nam, J.G. Kim, Effect of niobium on the corrosion behaviour of low alloy steel in sulfuric acid solution. Corros. Sci. 52, 3377–3384 (2010)

    Article  Google Scholar 

  14. X. Huang, D. Wang, Y. Yang, Effect of precipitation on intergranular corrosion resistance of 430 ferritic stainless steel. J. Iron Steel Res. Int. 22, 1062–1068 (2015)

    Article  Google Scholar 

  15. H. Demiroren, M. Aksoy, Electrochemical behavior of ferritic stainless steel alloyed with 1 wt% Ti V, and Nb in hydrochloric acid solution. Corrrosion 65, 624–630 (2009)

    Article  Google Scholar 

  16. M. Seo, G. Hultquist, C. Leygraf, N. Sato, The influence of minor alloying elements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution. Corros. Sci. 26, 949–960 (1986)

    Article  Google Scholar 

  17. J.W. Fu, Q.Q. Nie, W.X. Qiu, J.Q. Liu, Y.C. Wu, Morphology, orientation relationships and formation mechanism of TiN in Fe-17Cr steel during solidification. Mater. Charact. 133, 176–184 (2017)

    Article  Google Scholar 

  18. K.A. Jackson, Constitutional supercooling surface roughening. J. Cryst. Growth 264, 519–529 (2004)

    Article  ADS  Google Scholar 

  19. J.W. Fu, W.X. Qiu, Q.Q. Nie, Y.C. Wu, Precipitation of TiN during solidification of AISI 439 stainless steel. J. Alloy. Compd. 699, 938–946 (2017)

    Article  Google Scholar 

  20. J.W. Fu, F. Li, J.J. Sun, K. Cui, X.D. Du, Y.C. Wu, Effect of crystallographic orientations on the corrosion resistance of Fe-17Cr ferritic stainless steel. J. Electroanal. Chem. 841, 56–62 (2019)

    Article  Google Scholar 

  21. B. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1, 1987–1995 (1970)

    Article  Google Scholar 

  22. G.K. Tirumalasetty, M.A.V. Huis, C.M. Fang, Q. Xu, F.D. Tichelaar, D.N. Hanlon, J. Sietsma, H.W. Zandbergen, Characterization of NbC and (Nb, Ti)N nanoprecipitates in TRIP assisted multiphase steels. Acta Mater. 59, 7406–7415 (2011)

    Article  Google Scholar 

  23. J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations. Acta Mater. 60, 208–217 (2012)

    Article  Google Scholar 

  24. T. Skaland, Ø. Grong, T. Grong, A model for the graphite formation in ductile cast iron: part I. Inoculation mechanisms. Metall. Trans. A 24, 2321–2345 (1993)

    Article  Google Scholar 

  25. G. Du, J. Li, Z. Wang, Control of carbide precipitation during electroslag remelting-continuous rapid solidification of GCr15 steel. Metall. Mater. Trans. B 48, 2873–2890 (2017)

    Article  Google Scholar 

  26. M. Kaneko, H.S. Isaacs, Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions. Corros. Sci. 44, 1825–1834 (2002)

    Article  Google Scholar 

  27. J. Shu, H. Bi, X. Li, Z. Xu, The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels. Corros. Sci. 57, 89–98 (2012)

    Article  Google Scholar 

  28. C.G. Lee, H.Y. Ha, T.H. Lee, K.M. Cho, Effects of Nb on Pitting Corrosion Resistance of Ni-Free FeCrMnCN-Based Stainless Steels. J. Electrochem. Soc. 164, C591–C597 (2017)

    Article  Google Scholar 

  29. M.J. Carmezim, A.M. Simões, M.F. Montemor, C. Belo, Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros. Sci. 47, 581–591 (2005)

    Article  Google Scholar 

  30. H. Luo, H. Su, C. Dong, K. Xiao, X. Li, Electrochemical and passivation behavior investigation of ferritic stainless steel in alkaline environment. Constr. Build Mater. 96, 502–507 (2015)

    Article  ADS  Google Scholar 

  31. S. Haupt, H.H. Strehblow, A combined surface analytical and electrochemical study of the formation of passive layers on Fe/Cr alloys in 05 M H2SO4. Corros. Sci. 37, 43–54 (1995)

    Article  Google Scholar 

  32. S. Vafaeian, A. Fattah-Alhosseini, M.K. Keshavarz, Y. Mazaheri, Simultaneous investigation of the effect of advanced thermomechanical treatment and repetitive cyclic voltammetry on the electrochemical behavior of AISI 430 ferritic stainless steel. J. Mater. Eng. Perform. 26, 676–684 (2017)

    Article  Google Scholar 

  33. H.W. Liu, D. Xu, K. Yang, H.F. Liu, Y.F. Cheng, Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria. Corros. Sci. 132, 46–55 (2018)

    Article  ADS  Google Scholar 

  34. A.I. Muñoz, J.G. Antón, J.L. Guiñón, V.P. Herranz, Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques. Corros. Sci. 49, 3200–3225 (2007)

    Article  Google Scholar 

  35. H.W. Liu, T.Y. Gu, M. Asif, G.A. Zhang, H.F. Liu, The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. Corros. Sci. 114, 102–111 (2017)

    Article  ADS  Google Scholar 

  36. W. Liu, Y. Zhang, H. Zhang, Z. Qu, J. Li, Electrochemical study on corrosion process characteristics of the high-strength low-alloy steels in NaHSO3 solution. J. Solid State Electrochem. 13, 1645–1652 (2009)

    Article  Google Scholar 

  37. I.E. Castañeda, J.G. Gonzalez-Rodriguez, J. Colin, M.A. Neri-Flores, Electrochemical behavior of Ni-Al-Fe alloys in simulated human body solution. J. Solid State Electrochem. 14, 1145–1152 (2010)

    Article  Google Scholar 

  38. N. Fujita, K. Ohmura, M. Kikuchi, T. Suzuki, S. Funaki, I. Hiroshige, Effect of Nb on high-temperature properties for ferritic stainless steel. Scr. Mater. 35, 705–710 (1996)

    Article  Google Scholar 

  39. J. Liu, X. Luo, X. Hu, S. Liu, Effect of Ti and Nb micro-alloying on microstructure of the ultra-pure 11% Cr ferrite stainless steel. Acta Metall. Sin. 47, 688–696 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51571081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Wang, J., Li, F. et al. Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel. Appl. Phys. A 126, 194 (2020). https://doi.org/10.1007/s00339-020-3383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3383-1

Keywords

Navigation