Skip to main content
Log in

Design of nano-sized Pr3+–Co2+-substituted M-type strontium hexaferrites for optical sensing and electromagnetic interference (EMI) shielding in Ku band

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research investigates the effect of Pr3+–Co2+ substitution on the structural, optical, and electromagnetic interferrence (EMI) shielding properties of M-type strontium hexagonal ferrites with chemical composition Sr1−xPrxFe12−yCoyO19 (x = 0.0, 0.2, 0.4 and y = 0.00, 0.15, 0.35). The sample was prepared by sol–gel auto-combustion technique, pre-sintered at 400 °C for 4 h and sintered at 950 °C for 5 h. XRD analysis shows that the sample exhibits pure crystalline phase with no presence of impurity such as α-Fe2O3. The presence of three prominent peaks at 434, 543, and 586 cm−1 in FTIR spectra indicates the formation of hexaferrite phase. FESEM micrographs depict nanoparticles with hexagonal plate-like structure of hexaferrites which is vital for microwaves absorption, whereas EDX spectra show the host and substituted ions. The observed band gap was found to decrease with increase in Pr3+–Co2+ concentration. The maximum EMI shielding effectiveness of 27.40 dB at 18 GHz was obtained for the sample S2 which is above the commercial level of 20 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F.M. Idris, M. Hashim, Z. Abbas, I. Ismail, R. Nazlan, I.R. Ibrahim, Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. J. Magn. Magn. Mater. 405, 197–208 (2016). https://doi.org/10.1016/j.jmmm.2015.12.070

    Article  ADS  Google Scholar 

  2. J. Mohammed, B.F. Abubakar, K.U. Yerima, H. Hamisu, U.T. Isma, Biodegradable polymer modified rGO/PANI/CCTO nanocomposites: structural and dielectric properties. Mater. Today Proc. 5(14), 28462–28469 (2018). https://doi.org/10.1016/j.matpr.2018.10.133

    Article  Google Scholar 

  3. R.E. Camley, Z. Celinski, T. Fal, A.V. Glushchenko, A.J. Hutchison, Y. Khivintsev, B. Kuanr, I.R. Harward, V. Veerakumar, V.V. Zagorodnii, High-frequency signal processing using magnetic layered structures. J. Magn. Magn. Mater. 321, 2048–2054 (2009). https://doi.org/10.1016/j.jmmm.2008.04.125

    Article  ADS  Google Scholar 

  4. J. Mohammed, T. Tekou Carol, T.H.Y. Hafeez, B.I. Adamu, Y.S. Wudil, Z.I. Takai, S. Kumar, A.K. Srivastava, Tuning the dielectric and optical properties of Pr–Co substituted calcium copper titanate for electronics applications. J. Phys. Chem. Solids 126, 85–92 (2019). https://doi.org/10.1016/j.jpcs.2018.09.034

    Article  ADS  Google Scholar 

  5. J. Mohammed, J. Sharma, S. Kumar, T. Tekou Carol T, and A.K. Srivastava, Calcination temperature effect on the microstructure and dielectric properties of M-type strontium hexagonal ferrites. AIP Conf. Proc. 1860, 020007 (2017). https://doi.org/10.1063/1.4990306

    Article  Google Scholar 

  6. T. Tchouank Tekou Carol, J. Sharma, J. Mohammed, S. Kumar, A.K. Srivastava, Effect of temperature on the magnetic properties of nano-sized M-type barium hexagonal ferrites. AIP Conf. Proc. 1860, 020008 (2017). https://doi.org/10.1063/1.4990307

    Article  Google Scholar 

  7. J. Sharma, J. Mohammed, R. Kaur, T.C. Tekou, A.K. Srivastava, Investigation of structural and magnetic properties of Ba0.3Gd0.7Co0.7Fe11.3O19 hexaferrite. AIP Conf. Proc. 1860, 020017 (2017). https://doi.org/10.1063/1.4990316

    Article  Google Scholar 

  8. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009). https://doi.org/10.1016/j.jmmm.2009.01.004

    Article  ADS  Google Scholar 

  9. M. Pardavi-horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215–216, 171–183 (2000). https://doi.org/10.1016/S0304-8853(00)00106-2

    Article  ADS  Google Scholar 

  10. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, Formation of magnetic nanoparticles by low energy dual implantation of Ni and Fe into SiO2. J. Alloys Compd. 667, 255–261 (2016). https://doi.org/10.1016/j.jallcom.2016.01.172

    Article  Google Scholar 

  11. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, S. Application, A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition. Nano Micro Lett. 8, 291–311 (2016). https://doi.org/10.1007/s40820-016-0089-1

    Article  Google Scholar 

  12. C.E. Jeyanthi, R. Siddheswaran, P. Kumar, M.K. Chinnu, K. Rajarajan, R. Jayavel, Investigation on synthesis, structure, morphology, spectroscopic and electrochemical studies of praseodymium-doped ceria nanoparticles by combustion method. Mater. Chem. Phys. 151, 22–28 (2015). https://doi.org/10.1016/j.matchemphys.2014.10.001

    Article  Google Scholar 

  13. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Mater. 460, 229–233 (2018). https://doi.org/10.1016/j.jmmm.2018.04.017

    Article  ADS  Google Scholar 

  14. T.S. Kumar, S. Kaur, A.K. Kumar, Srivastava, Effect of heat treatment on properties of Sr0.7Nd0.3Co0.3Fe11.7O19. J. Supercond. Nov. Magn. 28, 2935–2940 (2015). https://doi.org/10.1007/s10948-015-3105-7

    Article  Google Scholar 

  15. T. Kaur, J. Sharma, S. Kumar, A.K. Srivastava, Optical and multiferroic properties of Gd–Co substituted barium hexaferrite. Cryst. Res. Technol. 52, 1700098 (2017). https://doi.org/10.1002/crat.201700098

    Article  Google Scholar 

  16. J. Mohammed, H.Y. Hafeez, T. Tekou Carol, T.C.E. Ndikilar, J. Sharma, P.K. Maji, S.K. Godara, A.K. Srivastava, Structural, dielectric, and magneto-optical properties of Cu2+–Er3+ substituted nanocrystalline strontium hexaferrite. Mater. Res. Express 6, 056111 (2019). https://doi.org/10.1088/2053-1591/ab063b

    Article  ADS  Google Scholar 

  17. R.K. Mudsainiyan, M. Gupta, S.K. Chawla, Self-combustion synthesis of Co–Zr-doped Ba-hexaferrite nanoparticles and their studied physicochemical. J. Supercond. Nov. Magn. 28, 3663–3674 (2015). https://doi.org/10.1007/s10948-015-3204-5

    Article  Google Scholar 

  18. P. Kaur, S.K. Chawla, S. Bindra, K. Pubby, Structural, magnetic and microwave absorption behavior of Co–Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression. J. Magn. Magn. Mater. 422, 304–314 (2017). https://doi.org/10.1016/j.jmmm.2016.08.095

    Article  ADS  Google Scholar 

  19. M. Rostami, M. Moradi, R.S. Alam, R. Mardani, Characterization of magnetic and microwave absorption properties of multi-walled carbon nanotubes/Mn–Cu–Zr substituted strontium hexaferrite nanocomposites. Mater. Res. Bull. 83, 379–386 (2016). https://doi.org/10.1016/j.materresbull.2016.06.019

    Article  Google Scholar 

  20. J. Mohammed, A.B. Suleiman, H.Y. Hafeez, T.T. Carol, T.J. Sharma, G.R. Bhadu, S.K. Godara, A.K. Srivastava, Effect of heat-treatment on the magnetic and optical properties of Sr0.7Al0.3Fe11.4Mn0.6O19. Mater. Res. Express 5, 086106 (2018). https://doi.org/10.1088/2053-1591/aad1e5

    Article  ADS  Google Scholar 

  21. J. Mohammed, A.B. Suleiman, T. Tekou Carol, T.H.Y. Hafeez,. P.K. Sharma, S.G. Maji, Kumar, A.K. Srivastava, Enhanced dielectric and optical properties of nanoscale barium for optoelectronics and high frequency application. Chin. Phys. B 27, 128100 (2018). https://doi.org/10.1088/1674-1056/27/12/128104

    Article  Google Scholar 

  22. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016). https://doi.org/10.1016/j.jmmm.2015.08.078

    Article  ADS  Google Scholar 

  23. J.F. Wang, C.B. Ponton, I.R. Harris, A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis. J. Alloys Compd. 403, 104–109 (2005). https://doi.org/10.1016/j.jallcom.2005.05.025

    Article  Google Scholar 

  24. I. Sadiq, I. Ali, E. Rebrov, S. Naseem, M.N. Ashiq, M.U. Rana, Nanosized Ce–Zn substituted microwave absorber material for X-band applications. J. Magn. Magn. Mater. 370, 25–31 (2014). https://doi.org/10.1016/j.jmmm.2014.06.045

    Article  ADS  Google Scholar 

  25. R.K. Mudsainiyan, A.K. Jassal, M. Gupta, S.K. Chawla, Study on structural and magnetic properties of nanosized M-type Ba-hexaferrites synthesized by urea assisted citrate precursor route. J. Alloys Compd. 645, 421–428 (2015). https://doi.org/10.1016/j.jallcom.2015.04.218

    Article  Google Scholar 

  26. A.K. Jassal, R.K. Mudsainiyan, S.K. Chawla, S.B. Narang, K. Pubby, Sol-gel route approach and improvisation in physico-chemical, structural, magnetic and electrical properties of BaCox/2Znx/2ZrxFe12−2xO19 ferrites. J. Magn. Magn. Mater. 447, 32–41 (2018). https://doi.org/10.1016/j.jmmm.2017.09.055

    Article  ADS  Google Scholar 

  27. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Applied surface science controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. 367, 52–58 (2016). https://doi.org/10.1016/j.apsusc.2016.01.160

    Article  ADS  Google Scholar 

  28. A.M. Amanulla, S.K. Jasmine, R. Sundaram, C.M. Magdalane, Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4–Co3O4 nanocomposites and its synthesis and characterization. J. Photochem. Photobiol. B Biol. 183, 233–241 (2018). https://doi.org/10.1016/j.jphotobiol.2018.04.034

    Article  Google Scholar 

  29. T. Kaur, B. Kaur, B.H. Bhat, S. Kumar, A.K. Srivastava, Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites. Phys. B Condens. Matter 456, 206–212 (2015). https://doi.org/10.1016/j.physb.2014.09.003

    Article  ADS  Google Scholar 

  30. A.O. Turky, M.M. Rashad, M. Bechelany, Tailoring optical and dielectric properties of Ba0.5Sr0.5TiO3 powders synthesized using citrate precursor route. Mater. Des. 90, 54–59 (2016). https://doi.org/10.1016/j.matdes.2015.10.113

    Article  Google Scholar 

  31. A.O. Turky, I.A. Ibrahim, Tuning optical and dielectric properties of calcium copper titanate CaxCu3−xTi4O12 nanopowders. RSC Adv. 5, 18767–18772 (2015). https://doi.org/10.1039/C4RA15222K

    Article  Google Scholar 

  32. I.A. Auwal, S. Güner, H. Güngüne, A. Baykal, Sr1−xLaxFe12O19 (0.0x0.5) hexaferrites: synthesis, characterizations, hyperfine interactions and magneto-optical properties. Ceram. Int. 42, 12995–13003 (2016). https://doi.org/10.1016/j.ceramint.2016.05.074

    Article  Google Scholar 

  33. M.M. Rashad, A.O. Turky, A.T. Kandil, Optical and electrical properties of Ba1−xSrxTiO3 nanopowders at different Sr2+ ion content. J. Mater. Sci. Mater. Electron. 24, 3284–3291 (2013). https://doi.org/10.1007/s10854-013-1244-9

    Article  Google Scholar 

  34. R.S. Alam, M. Moradi, H. Nikmanesh, J. Ventura, M. Rostami, Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12−4xO19 hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016). https://doi.org/10.1016/j.jmmm.2015.11.038

    Article  ADS  Google Scholar 

  35. S.B. Narang, K. Pubby, Electromagnetic characterization of Co–Ti doped Ba–M ferrite-based frequency-tunable microwave absorber in 12.4–40 GHz. J. Supercond. Nov. Magn. 30, 511–520 (2017). https://doi.org/10.1007/s10948-016-3789-3

    Article  Google Scholar 

  36. I. Sadiq, I. Khan, E.V. Rebrov, M.N. Ashiq, S. Naseem, M.U. Rana, Structural, infrared, magnetic and microwave absorption properties of rare earth doped X-type hexagonal nanoferrites. J. Alloys Compd. 570, 7–13 (2013). https://doi.org/10.1016/j.jallcom.2013.03.116

    Article  Google Scholar 

  37. Z. Yan, J. Luo, Effects of Ce–Zn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles. J. Alloys Compd. 695, 1185–1195 (2017). https://doi.org/10.1016/j.jallcom.2016.08.333

    Article  Google Scholar 

  38. F.M.M. Pereira, M.R.P. Santos, R.S.T.M. Sohn, J.S. Almeida, A.M.L. Medeiros, M.M. Costa, A.S.B. Sombra, Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1−xFe12O19) in the RF and microwave (MW) frequency range. J. Mater. Sci. Mater. Electron. 20, 408–417 (2009). https://doi.org/10.1007/s10854-008-9744-8

    Article  Google Scholar 

  39. T. Tsutaoka, Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 93, 2789 (2003). https://doi.org/10.1063/1.1542651

    Article  ADS  Google Scholar 

  40. H. Aiping, H. Huahui, F. Zekun, W. Shilei, Study on electromagnetic properties of Mn–Zn ferrites with Fe-poor composition. Mater. Chem. Phys. 105, 303–307 (2007). https://doi.org/10.1016/j.matchemphys.2007.04.067

    Article  Google Scholar 

  41. R.S. Meena, S. Bhattachrya, R. Chatterjee, Complex permittivity, permeability and microwave absorbing properties of (Mn2−xZnx) U-type hexaferrite. J. Magn. Magn. Mater. 322, 2908–2914 (2010). https://doi.org/10.1016/j.jmmm.2010.05.004

    Article  ADS  Google Scholar 

  42. J. Qiu, Y. Wang, M. Gu, Effect of Cr substitution on microwave absorption of BaFe12O19. Mater. Lett. 60, 2728–2732 (2006). https://doi.org/10.1016/j.matlet.2006.01.079

    Article  Google Scholar 

  43. S.S.S. Afghahi, M. Jafarian, C.A. Stergiou, X-band microwave absorbing characteristics of multicomponent composites with magnetodielectric fillers. J. Magn. Magn. Mater. 419, 386–393 (2016). https://doi.org/10.1016/j.jmmm.2016.06.040

    Article  ADS  Google Scholar 

  44. J. Mohammed, T. Tekou, C.T.H.Y. Hafeez, D.B. Gopala, R. Bhadu, S. Kumar, G.S.B. Narang, Lightweight SrM/CCTO/rGO nanocomposites for optoelectronics and K band microwave absorption. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00690-w

    Article  Google Scholar 

  45. J. Wang, J. Wang, B. Zhang, Y. Sun, W. Chen, T. Wang, Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption. J. Magn. Magn. Mater. 401, 209–216 (2015). https://doi.org/10.1016/j.jmmm.2015.10.001

    Article  ADS  Google Scholar 

  46. X. Liu, C. Cui, T. Li, A. Xia, Y. Lv, “Ni@C nanocapsules-decorated SrFe12O19 hexagonal nano flakes for high-frequency microwave absorption. J. Alloys Compd. 678, 234–240 (2016). https://doi.org/10.1016/j.jallcom.2016.03.275

    Article  Google Scholar 

  47. Y. Wang, H. Guan, C. Dong, X. Xiao, S. Du, Y. Wang, Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42, 936–942 (2016). https://doi.org/10.1016/j.ceramint.2015.09.022

    Article  Google Scholar 

  48. M.H. Al-saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon N. Y. 47, 1738–1746 (2009). https://doi.org/10.1016/j.carbon.2009.02.030

    Article  Google Scholar 

  49. A. Pratap, P. Garg, F. Alam, K. Singh, R.B. Mathur, R.P. Tandon, A. Chandra, S.K. Dhawan, Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, -Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon N. Y. 50, 3868–3875 (2012). https://doi.org/10.1016/j.carbon.2012.04.030

    Article  Google Scholar 

  50. T. Kaur, S. Kumar, J. Sharma, A.K. Srivastava, Radiation losses in the microwave Ku band in magneto-electric nanocomposites. Beilstein J. Nanotechnol. 6, 1700–1707 (2015). https://doi.org/10.3762/bjnano.6.173

    Article  Google Scholar 

  51. T. Kaur, S. Kumar, S.B. Narang, A.K. Srivastava, Radiation losses in microwave Ku region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites. J. Magn. Magn. Mater. 420, 336–342 (2016). https://doi.org/10.1016/j.jmmm.2016.07.058

    Article  ADS  Google Scholar 

  52. A.P. Singh, M. Mishra, D.P. Hashim, T.N. Narayanan, M.G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B.P. Singh, A. Chandra, R. Vajtai, S.K. Dhawan, P.M. Ajayan, B.K. Gupta, Probing the engineered sandwich network of vertically aligned carbon nanotube-reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon N. Y. 85, 79–88 (2014). https://doi.org/10.1016/j.carbon.2014.12.065

    Article  Google Scholar 

  53. A. Ameli, P.U. Jung, C.B. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon N. Y. 60, 379–391 (2013). https://doi.org/10.1016/j.carbon.2013.04.050

    Article  Google Scholar 

  54. W. Song, M. Cao, M. Lu, S. Bi, C. Wang, J. Liu, J. Yuan, L. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon N. Y. 66, 67–76 (2013). https://doi.org/10.1016/j.carbon.2013.08.043

    Article  Google Scholar 

  55. M. Hong, W. Choi, K. An, S. Kang, S. Park, Y. Sil, B. Kim, Electromagnetic interference shielding behaviors of carbon fibers-reinforced polypropylene matrix composites: II. Effects of filler length control. J. Ind. Eng. Chem. 20, 3901–3904 (2014). https://doi.org/10.1016/j.jiec.2013.12.096

    Article  Google Scholar 

  56. Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng, N. Yan, Fabrication of a flexible electromagnetic interference shielding Fe3O4@ reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085

    Article  Google Scholar 

  57. W. Song, X. Guan, L. Fan, M. Cao, C. Wang, M. Cao, Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon N. Y. 93, 151–160 (2015). https://doi.org/10.1016/j.carbon.2015.05.033

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Test and Instrumentation and Centre (STIC), Cochin University of Science and Technology, Kerala, India, for UV–Vis–NIR spectrophotometer characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, J., Trudel, T.T.C., Hafeez, H.Y. et al. Design of nano-sized Pr3+–Co2+-substituted M-type strontium hexaferrites for optical sensing and electromagnetic interference (EMI) shielding in Ku band. Appl. Phys. A 125, 251 (2019). https://doi.org/10.1007/s00339-019-2545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2545-5

Navigation