Skip to main content
Log in

Reaction kinetics of equiatomic Fe–Mo solid solutions obtained by mechanical alloying: an X-ray diffraction and Mössbauer spectroscopy study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The reaction kinetics of equiatomic Fe–Mo solid solutions produced by mechanical alloying were studied by X-ray diffraction and Mössbauer spectroscopy. The materials were milled with velocities of rotation of 400 and 500 rpm for several milling times to obtain samples of various reaction stages. The X-ray diffraction patterns showed the presence of two bcc phases, corresponding to metallic Fe and Mo, in all samples. Analysis of these diffractograms indicated diffusion of Mo within the Fe matrix and diffusion of Fe within the Mo matrix, as a result of the milling process. While the X-ray diffraction technique did not allow for the identification of a crystallographic phase being clearly transformed, making it difficult to study the reaction kinetics, using Mössbauer spectroscopy, it was possible to identify two magnetic phases that suffer transformation during the course of milling: a ferromagnetic sextet corresponding to metallic Fe and a paramagnetic doublet corresponding to Fe atoms with a majority of Mo neighbors (metallic Mo does not possess a magnetic moment). Both magnetic phases may be present in the bcc Fe matrix or the bcc Mo matrix. The transformation kinetics of the sextet were studied using a method based on a local description of phase volume transformation, depicted by the tribochemical activity parameter. The results were compared to published work on the application of this method to Fe–Cu and Fe–N systems. A behavior similar to that of Fe–N was observed, which, similar to the Fe–Mo system and as opposed to the Fe–Cu system, possesses a positive enthalpy of mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Jiraskova, K. Zabransky, I. Turek, J. Bursik, D. Jancik, Microstructure and physical properties of mechanically alloyed Fe–Mo powder. J. Alloy Compd. 477, 55 (2009)

    Article  Google Scholar 

  2. V.V. Kuznetsov, K.E. Golyanin, T.V. Pshenichkina, B.F. Lyakhov, S.E. Lyashenko, Chemical composition of Fe–Mo alloys obtained by electrodeposition. Mendeleev Commun. 23, 331 (2013)

    Article  Google Scholar 

  3. J. Cieślak, S.M. Dubiel, M. Reissner, Magnetism of \(\alpha\)-phase FeMo alloys: Its characterization by magnetometry and Mössbauer spectrometry. J. Magn. Magn. Mater. 401, 751 (2016)

    Article  ADS  Google Scholar 

  4. J. Przewoźnik, S.M. Dubiel, Magnetism of \(\alpha\)-phase Fe–Mo alloys: ac magnetic susceptibility study. J. Alloys Compd. 630, 222 (2015)

    Article  Google Scholar 

  5. R. Idczak, R. Konieczny, J. Chojcan, Study of defects in Fe–Re and Fe–Mo alloys by the Mössbauer and positron annihilation spectroscopies. Solid State Commun. 152, 1924 (2012)

    Article  ADS  Google Scholar 

  6. R. Idczak, R. Konieczny, J. Chojcan, Short-range order in iron alloys studied by \(^{57}\) Fe Mössbauer spectroscopy. Solid State Commun. 159, 22 (2013)

    Article  ADS  Google Scholar 

  7. H. Moumeni, S. Alleg, J. Greneche, Formation of ball-milled FeMo nanostructured powders. J. Alloys Compd. 419, 140 (2006)

    Article  Google Scholar 

  8. H. Moumeni, A. Nemamcha, S. Alleg, J.M. Grenèche, Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders. Mater. Chem. Phys. 138, 209 (2013)

    Article  Google Scholar 

  9. J. Park, G. Jeong, S. Kang, S.-J. Lee, H. Choi, Fabrication of Fe–Cr–Mo powder metallurgy steel via a mechanical-alloying process. Met. Mater. Int. 21, 1031 (2015)

    Article  Google Scholar 

  10. M.A. Eryomina, S.F. Lomayeva, A.L. Ul’yanov, E.P. Yelsukov, Structural and phase transformations during copper and iron mechanical alloying in liquid medium studied by Mössbauer spectroscopy. Met. Mater. Int. 22, 163 (2016)

    Article  Google Scholar 

  11. P. Loginov, D. Sidorenko, E. Levashov, Mechanical alloying as an effective way to achieve superior properties of Fe–Co–Ni binder alloy. Metals 7, 570 (2017)

    Article  Google Scholar 

  12. R. Konieczny, R. Idczak, Thermodynamic properties of dilute Co–Fe solid solutions studied by \(^{57}\) Fe Mössbauer spectroscopy. Nukleonika 62, 109 (2017)

    Article  Google Scholar 

  13. T. Pikula, Local atomic arrangement in mechanosynthesized \({\text{ Co }}_{x} {\text{ Fe }}_{1-x} {\text{ Ni }}_{y}\) alloys studied by Mössbauer spectroscopy. Appl. Phys. A 117, 1491 (2014)

    Article  Google Scholar 

  14. T.P. Braga, D.F. Dias, M.F. Sousa, J.M. Soares, J.M. Sasaki, Synthesis of air stable FeCo alloy nanocrystallite by proteic sol-gel method using a rotary oven. J. Alloy Compd. 622, 408 (2015)

    Article  Google Scholar 

  15. C.M. Santos, A.F.N. Martins, B.C. Costa, T.S. Ribeiro, T.P. Braga, J.M. Soares, J.M. Sasaki, Synthesis of FeNi alloy nanomaterials by proteic solgel method: Crystallographic, morphological, and magnetic properties. J. Nanomater. 2016, 1 (2016)

    Article  Google Scholar 

  16. R. Idczak, K. Idczak, R. Konieczny, Oxidation and surface segregation of chromium in Fe-Cr alloys studied by Mössbauer and X-ray photoelectron spectroscopy. J. Nucl. Mater. 452, 141 (2014)

    Article  ADS  Google Scholar 

  17. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1 (2001)

    Article  Google Scholar 

  18. I.F. Vasconcelos, R.S. de Figueiredo, Transformation kinetics on mechanical alloying. J. Phys. Chem. B 107, 3761 (2003)

    Article  Google Scholar 

  19. S. Torkan, A. Ataie, H. Abdizadeh, S. Sheibani, Effect of milling energy on preparation of nano-structured \({\text{ Fe }}_{70} {\text{ Si }}_{30}\) alloys. Powder Technol. 267, 145 (2014)

    Article  Google Scholar 

  20. P. Baláz, M. Achimovicová, M. Baláz, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado, F. Delogu, E. Dutková, E. Gaffet, F.J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 42, 7571 (2013)

    Article  Google Scholar 

  21. L. Kong, Y. Liu, J. Liu, Y. Song, S. Li, Y. Liang, Y. Zheng, W. Cui, Kinetics of the austenitization in the Fe–Mo–C ternary alloys during continuous heating. Open Phys. 14, 695 (2016)

    Article  Google Scholar 

  22. T. Kirindi, U. Sari, M. Kurt, Mössbauer and electron microscopy study of martensitic transformations in an Fe–Mn–Mo alloy. Int. J. Miner. Metall. Mater. 17, 448 (2010)

    Article  Google Scholar 

  23. I.F. Vasconcelos, R.S. de Figueiredo, Driving mechanisms on mechanical alloying: Experimental and molecular dynamics discussions. Nanostruct. Mater. 11, 935 (1999)

    Article  Google Scholar 

  24. J. Cieślak, B.F.O. Costa, S.M. Dubiel, G.L. Caër, Kinetics of the sigma-to-alpha phase transformation caused by ball milling in near equiatomic Fe–Cr alloys. Phys. Rev. B 73, 184123 (2006)

    Article  ADS  Google Scholar 

  25. S. Sheibani, A. Ataie, S. Heshmati-Manesh, Kinetics analysis of mechano-chemically and thermally synthesized Cu by Johnson–Mehl–Avrami model. J. Alloys Compd. 455, 447 (2008)

    Article  Google Scholar 

  26. C.W. Duan, L.X. Hu, Y. Sun, H.P. Zhou, H. Yu, Reaction kinetics for the solid state synthesis of the \({\text{ AlH }}_{3}/ {\text{ MgCl }}_{2}\) na no-composite by mechanical milling. Phys. Chem. Chem. Phys. 17, 22152 (2015)

    Article  Google Scholar 

  27. I. Lucks, P. Lamparter, E.J. Mittemeijer, Uptake of iron, oxygen and nitrogen in molybdenum during ball milling. Acta Mater. 49, 23578 (2001)

    Article  Google Scholar 

  28. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151 (1967)

    Article  Google Scholar 

  29. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  30. L. Bleicher, J.M. Sasaki, C.O. Paiva-Santos, Development of a graphical interface for the Rietveld refinement program DBWS. J. Appl. Crystallogr. 33, 1189 (2000)

    Article  Google Scholar 

  31. M.A. Bab, L. Mendoza-Zélis, L.C. Damonte, Nanocrystalline HfN produced by mechanical milling: Kinetic aspects. Acta Mater. 49, 4205 (2001)

    Article  Google Scholar 

  32. Y. Shen, H.H. Hng, J.T. Oh, Formation kinetics of Ni-15%Fe-5% Mo during ball milling. Mater. Lett. 58, 2824–2828 (2004)

    Article  Google Scholar 

  33. R. Idczak, Internal oxidation process in diluted Fe–Cr alloys: A transmission Mössbauer spectroscopy study. Appl. Phys. A 122, 1009 (2016)

    Article  ADS  Google Scholar 

  34. S. Garroni, F. Delogu, C.B. Minella, C. Pistidda, S. Cuesta-Lopez, Mechanically activated metathesis reaction in \({\text{ NaNH}}_2 {\text{-MgH}}_2\) powder mixtures. J. Mater. Sci. 52, 11891 (2017)

    Article  ADS  Google Scholar 

  35. F. Miani, P. Matteazzi, D. Basset, Mechanosynthesis of iron carbides at composition Fe75C25: Modeling of the process kinetics. J. Alloys Compd. 204, 151 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian research agencies Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.I.S., Pereira, M.S. & Vasconcelos, I.F. Reaction kinetics of equiatomic Fe–Mo solid solutions obtained by mechanical alloying: an X-ray diffraction and Mössbauer spectroscopy study. Appl. Phys. A 124, 544 (2018). https://doi.org/10.1007/s00339-018-1962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1962-1

Navigation