Skip to main content
Log in

Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump–probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Sugioka, Y. Cheng, Light Sci. Appl. 3, e149 (2014)

    Article  Google Scholar 

  2. E. Gamaly, Femtosecond Laser-Matter Interactions Theory, Experiments and Applications (CRC Press, Boca Raton, 2011)

    Google Scholar 

  3. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, S.I. Anisimov, J. Meyer-ter-Vehn. Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  4. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, D. von der Linde, in High-Power Laser Ablation, Vol. 3343, ed. by C.R. Phipps (SPIE, 1998), pp. 46–57

  5. M.C. Downer, R.L. Fork, C.V. Shank, J. Opt. Soc. Am. B 2, 595 (1985)

    Article  ADS  Google Scholar 

  6. S.I. Anisimov, N.A. Inogamov, A.M. Oparin, B. Rethfeld, T. Yabe, M. Ogawa, V.E. Fortov, Appl. Phys. A Mater. Sci. Process. Process. 69, 617 (1999)

    Article  ADS  Google Scholar 

  7. N.A. Inogamov, Y.V. Petrov, S.I. Anisimov, A.M. Oparin, N.V. Shaposhnikov, D. von der Linde, J. Meyer-ter-Vehn, J. Exp. Theor. Phys. Lett. 69, 310 (1999)

    Article  Google Scholar 

  8. D. von der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 1 (2000)

    Article  Google Scholar 

  9. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, J. Solis, Appl. Phys. Lett. 105, 112902 (2014)

    Article  ADS  Google Scholar 

  10. M. Garcia-Lechuga, J. Solis, J. Siegel, Appl. Phys. Lett. 108, 171901 (2016)

    Article  ADS  Google Scholar 

  11. T. Winkler, L. Haahr-Lillevang, C. Sarpe, B. Zielinski, N. Götte, A. Senftleben, P. Balling, T. Baumert, Nat. Phys. 14, 74–79 (2017)

    Article  Google Scholar 

  12. S. Rapp, M. Kaiser, M. Schmidt, H.P. Huber, Opt. Express. 24, 17572 (2016)

    Article  ADS  Google Scholar 

  13. L. Gallais, S. Monneret, Opt. Lett. 41, 3245 (2016)

    Article  ADS  Google Scholar 

  14. M. Chanal, V.Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, D. Grojo, Nat. Commun. 8, 773 (2017)

    Article  ADS  Google Scholar 

  15. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, J. Solis, J. Appl. Phys. 116, 113502 (2014)

    Article  ADS  Google Scholar 

  16. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  17. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, 1987)

    MATH  Google Scholar 

  18. J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, J. Solis, Appl. Surf. Sci. 258, 9389 (2012)

    Article  ADS  Google Scholar 

  19. B. Rethfeld, Phys. Rev. B. 73, 035101 (2006)

    Article  ADS  Google Scholar 

  20. M. Lebugle, N. Sanner, N. Varkentina, M. Sentis, O. Utéza, J. Appl. Phys. 116, 063105 (2014)

    Article  ADS  Google Scholar 

  21. J. Siegel, J. Solis, in Femtosecond Laser Micromach. Photonic Microfluid. Devices Transparent Mater, ed. by R. Osellame, G. Cerullo, R. Ramponi eds. (Springer, Berlin, 2012), pp. 19–41

    Google Scholar 

  22. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B. 27, 1065 (2010)

    Article  ADS  Google Scholar 

  23. C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, P. Audebert, J. Quant. Spectrosc. Radiat. Transf. 65, 455 (2000)

    Article  ADS  Google Scholar 

  24. D.E. Zelmon, D.L. Small, D. Jundt, J. Opt. Soc. Am. B. 14, 3319 (1997)

    Article  ADS  Google Scholar 

  25. E.G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A.V. Rode, W. Krolikowski, Phys. Rev. B. 81, 054113 (2010)

    Article  ADS  Google Scholar 

  26. M. Garcia-Lechuga, L. Haahr-Lillevang, J. Siegel, P. Balling, S. Guizard, J. Solis, Phys. Rev. B. 95, 214114 (2017)

    Article  ADS  Google Scholar 

  27. D. Ciplys, R. Rimeika, Ultragarsas. 3, 14 (1999)

    Google Scholar 

  28. Y. Shibata, K. Kaya, K. Akashi, M. Kanai, T. Kawai, S. Kawai, J. Appl. Phys. 77, 1498 (1995)

    Article  ADS  Google Scholar 

  29. N. Zhang, X. Zhu, J. Yang, X. Wang, M. Wang, Phys. Rev. Lett. 99, 2 (2007)

    Google Scholar 

  30. H. Hu, X. Wang, H. Zhai, N. Zhang, P. Wang, Appl. Phys. Lett. 97, 061117 (2010)

    Article  ADS  Google Scholar 

  31. W.L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev, Phys. Rev. B Condens. Matter Mater. Phys. 78, 1 (2008)

    Google Scholar 

Download references

Acknowledgements

This work has been partly funded by the Spanish Ministry of Economy and Competiveness (Project No. TEC2014-52642-C2-1-R). M.G.-L. acknowledges the FPU (Formación de Profesorado Universitario) Grant No. AP2012-0217 awarded by the Spanish Ministry of Education. We are grateful to Dr. K. Sokolowski-Tinten for the advices on the development of time-resolved microscopy using the same wavelengths for pump and probe pulses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Garcia-Lechuga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Lechuga, M., Solis, J. & Siegel, J. Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy. Appl. Phys. A 124, 221 (2018). https://doi.org/10.1007/s00339-018-1650-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1650-1

Navigation