Skip to main content
Log in

Investigation of magnetic and structural properties of Ni–Zr co-doped M-type Sr–La hexaferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, Ni2+ and Zr4+ co-doped Sr–La hexaferrites Sr0.7La0.3Fe12.0−2x(NiZr)xO19 (0.0 ≤ x ≤ 0.5) were synthesized by the standard ceramic method. The phase identification of the hexaferrites was confirmed by X-ray diffraction analysis. X-ray diffraction analysis showed that all the samples were in single phase M-type hexagonal structure and no impurity phase was observed. Lattice parameters (c and a) increased with increasing NiZr content (x) from 0.0 to 0.5. The morphology of the hexaferrites was analyzed by a field emission scanning electron microscopy (FE-SEM). FE-SEM micrographs showed that the grains exhibited hexagonal shape in a plate-like structure with clear grain boundaries. Magnetization properties of the hexaferrites were carried out at room temperature using a physical property measurement system-vibrating sample magnetometer. The values of saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were calculated from magnetic hysteresis (MH) loops. Ms and Hc decreased with increasing NiZr content (x) from 0.0 to 0.5. Mr and Mr/Ms ratio first increased with increasing NiZr content (x) from 0.0 to 0.1, and then decreased when NiZr content (x) ≥ 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci 57, 1191–1334 (2012)

    Google Scholar 

  2. Y.J. Yang, J.X. Shao, F.H. Wang, X.S. Liu, D.H. Huang, Impacts of MnZn doping on the structural and magnetic properties of M-type SrCaLa hexaferrites. Appl. Phys. A 123, 309 (2017)

    ADS  Google Scholar 

  3. V.P. Singh, G. Kumar, A. Kumar, R.S. Rai, M.A. Valente, K.M. Batoo, R.K. Kotnala, M. Singh, Structural, magnetic and Mössbauer study of BaLaxFe12–xO19 nanohexaferrites synthesized via sol–gel auto-combustion technique. Ceram. Int 42, 5011–5017 (2016)

    Google Scholar 

  4. L. Lechevallier, J.M. Le Breton, A. Morel, J. Teillet, Structural and magnetic properties of Sr1–xSmxFe12O19 hexagonal ferrites synthesised by a ceramic process. J. Alloys Compd. 359, 310–314 (2003)

    Google Scholar 

  5. B.H. Bhat, B. Want, Magnetic behaviour of neodymium-substituted strontium hexaferrite. Appl. Phys. A 122, 148 (2016)

    ADS  Google Scholar 

  6. Z.P. Zhou, Z.Y. Wang, X.T. Wang, X.R. Wang, J.S. Zhang, F.K. Dou, M.L. Jin, J.Y. Xu, Differences in the structure and magnetic properties of Sr1–xRExFe12O19 (RE: Pr and Dy) ferrites by microwave-assisted synthesis method. J. Alloys Compd. 610, 264–270 (2014)

    Google Scholar 

  7. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater 397, 101–107 (2016)

    ADS  Google Scholar 

  8. A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater 430, 29–35 (2017)

    ADS  Google Scholar 

  9. H.Z. Wang, Y.N. Hai, B. Yao, Y. Xu, L. Shan, L. Xu, J.L. Tang, Q.H. Wang, Tailoring structure and magnetic characteristics of strontium hexaferrite via Al doping engineering. J. Magn. Magn. Mater 422, 204–208 (2017)

    ADS  Google Scholar 

  10. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12–xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater 393, 253–259 (2015)

    ADS  Google Scholar 

  11. S.V. Trukhanov, A.V. Trukhanov, V.O. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12–xInxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater 417, 130–136 (2016)

    ADS  Google Scholar 

  12. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, E.S. Yakovenko, L.Yu. Matzui, D.A. Vinnik, Magnetic, dielectric and microwave properties of the BaFe12–xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater 442, 300–310 (2017)

    ADS  Google Scholar 

  13. X. Obradors, A. Collomb, M. Pernet, J.C. Joubert, Structural and magnetic properties of BaFe12–xMnxO19 hexagonal ferrites. J. Magn. Magn. Mater 44, 118–128 (1984)

    ADS  Google Scholar 

  14. R. Ezhil Vizhi, V. Harikrishnan, P. Saravanan, D. Rajan Bahu, Influence of Co-substitution on the structural and magnetic properties of nanocrystalline Ba0.5Sr0.5Fe12O19. J. Cryst. Growth 452, 117–124 (2016)

    ADS  Google Scholar 

  15. M.A. Malana, R.B. Qureshi, M.N. Ashiq, M.F. Ehsan, Synthesis, structural, magnetic and dielectric characteristics of molybdenum doped calcium strontium M-type hexaferrites. Ceram. Int 42, 2686–2692 (2016)

    Google Scholar 

  16. S. Vadivelan, N.V. Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation. Results Phys 6, 843–850 (2016)

    ADS  Google Scholar 

  17. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett 103, 100–105 (2016)

    ADS  Google Scholar 

  18. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, M. Salem, Strong correlation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram. Intern 43, 5635–5641 (2017)

    Google Scholar 

  19. P. Shen, J.H. Luo, Y. Zuo, Z. Yan, K. Zhang, Effect of La–Ni substitution on the structural, magnetic and microwave absorption properties of barium ferrite. Ceram. Int 43, 4846–4851 (2017)

    Google Scholar 

  20. M.J. Iqbal, S. Farooq, Could binary mixture of Nd–Ni ions control the electrical behavior of strontium-barium M-type hexaferrite nanoparticles? Mater. Res. Bull 46, 662–667 (2011)

    Google Scholar 

  21. A. Grusková, J. Lipka, M. Papánová, J. Sláma, I. Tóth, D. Kevická, G. Mendoza, J.C. Corral, J. Šubrt, La–Zn substituted hexaferrites prepared by chemical method. Hyperfine Interact 164, 27–33 (2005)

    ADS  Google Scholar 

  22. L. Peng, L.Z. Li, R. Wang, Y. Hu, X.Q. Tu, X.X. Zhong, Effects of La–Co substitution on the crystal structure and magnetic properties of low temperature sintered Sr1–xLaxFe12–xCoxO19 (x = 0–0.5) ferrites. J. Magn. Magn. Mater 393, 399–403 (2015)

    ADS  Google Scholar 

  23. Y.-M. Kang, K.-S. Moon, Magnetic properties of Ce–Mn substituted M-type Sr-hexaferrites. Ceram. Int 41, 12828–12834 (2015)

    Google Scholar 

  24. J. Li, H.W. Zhang, V.G. Harris, Y.L. Liao, Y.L. Liu, Ni–Ti equiatomic co-substitution of hexagonal M-type Ba(NiTi)xFe12–2xO19 ferrites. J. Alloys Compd. 649, 782–787 (2015)

    Google Scholar 

  25. M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, Synthesis, structural, magnetic and dielectric properties of zirconium copper doped calcium strontium hexaferrites. J. Alloys Compd. 617, 437–443 (2014)

    Google Scholar 

  26. P. Kaur, S.K. Chawla, S.B. Narang, K. Pubby, Structural, magnetic and microwave absorption behavior of Co–Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression. J. Magn. Magn. Mater 422, 304–314 (2017)

    ADS  Google Scholar 

  27. M. Sharma, S.C. Kashyap, H.C. Gupta, Effect of Mg–Zr substitution and microwave pressing on the magnetic properties of barium hexaferrite. Phys. B 448, 24–28 (2014)

    ADS  Google Scholar 

  28. J. Singh, C. Singh, D. Kaur, H. Zaki, I.A. Abdel-Latif, S.B. Narang, R. Jotania, S. Mishra, R. Joshi, P. Dhruv, M. Ghimiree, S.E. Shirsath, S.S. Meena, Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+–Al3+ doped M-type Ba–Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. 695, 1112–1121 (2017)

    Google Scholar 

  29. M. Jean, V. Nachbaur, J. Bran, J.-M. Le Braton, Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process. J. Alloys Compd. 496, 306–312 (2010)

    Google Scholar 

  30. M.N. Ashiq, M.J. Iqbal, I.H. Gul, Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater 323, 259–263 (2011)

    ADS  Google Scholar 

  31. S. Shakoor, M.N. Ashiq, M.A. Marlana, A. Mahmood, M.F. Warsi, M. Najam-ul-Haq, N. Karamat, Electrical, dielectric and magnetic characterization of Bi–Cr substituted M-type strontium hexaferrite nanomaterials. J. Magn. Magn. Mater 362, 110–114 (2014)

    ADS  Google Scholar 

  32. J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Joshi, S.R. Mishra, R. Jotania, M. Ghimiree, C.C. Chauhan, Tunable microwave absorption in Co–Al substituted M-type Ba–Sr hexagonal ferrite. Mater. Design 110, 749–761 (2016)

    Google Scholar 

  33. Y. Alizad Farzin, O. Mirzaee, A. Ghasemi, Synthesis behavior and magnetic properties of Mg–Ni co-doped Y-type hexaferrite prepared by sol–gel auto-combustion method. Mater. Chem. Phys 178, 149–159 (2016)

    Google Scholar 

  34. T. Tsutaoka, A. Tsurunaga, N. Koga, Permeability and permittivity spectra of substituted barium ferrites BaFe12–x(Ni0.5Ti0.5)xO19 (x = 0 to 5). J. Magn. Magn. Mater 399, 64–71 (2016)

    ADS  Google Scholar 

  35. Y.J. Yang, F.H. Wang, X.S. Liu, J.X. Shao, D.H. Huang, Magnetic and microstructural properties of Al substituted M-type Ca–Sr hexaferrites. J. Magn. Magn. Mater 421, 349–354 (2017)

    ADS  Google Scholar 

  36. R.R. Bhosale, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural, electrical and dielectric properties of Zn–Zr doped strontium hexaferrite nanoparticles. J. Mater. Sci. Mater. Electron 24, 3101–3107 (2013)

    Google Scholar 

  37. P. Kuruva, P.R. Matli, B. Mohammad, S. Reddigari, S. Katlakunta, Effect of Ni–Zr codoping on dielectric and magnetic properties of SrFe12O19 via sol–gel route. J. Magn. Magn. Mater 382, 172–178 (2015)

    ADS  Google Scholar 

  38. M.V. Rane, D. Bahadur, S.D. Kulkarni, S.K. Date, Magnetic properties of Ni–Zr substituted Ba ferrite. J. Magn. Magn. Mater 195, L256-L260 (1999)

    ADS  Google Scholar 

  39. M.V. Rane, D. Bahadur, A.K. Nigam, C.M. Srivastava, Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magn. Magn. Mater 192, 288–296 (1999)

    ADS  Google Scholar 

  40. S.V. Trukhanov, Investigation of stability of ordered manganites. J. Exp. Theor. Phys 101, 513–520 (2005)

    ADS  Google Scholar 

  41. S.V. Trukhanov, Magnetic and magnetotransport properties of La1–xBaxMnO3–x/2 perovskite manganites. J. Mater. Chem 13, 347–352 (2003)

    Google Scholar 

  42. R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater 381, 1–9 (2015)

    ADS  Google Scholar 

  43. L. Lechevallier, J.M. Le Breton, J.F. Wang, I.R. Harris, Structural analysis of hydrothermally synthesized Sr1–xSmxFe12O19 hexagonal ferrites. J. Magn. Magn. Mater 269, 192–196 (2004)

    ADS  Google Scholar 

  44. X. Battle, X. Obradors, J. Rodríguez-Carvajal, M. Pernet, M.V. Cabañas, M. Vallet, Cation distribution and intrinsic magnetic properties of Co–Ti-doped M-type barium ferrite. J. Appl. phys 70, 1614–1623 (1991)

    ADS  Google Scholar 

  45. S.Y. An, I.-B. Shim, C.S. Kim, Mössbauer and magnetic properties of Co–Ti substituted barium hexaferrite nanoparticles. J. Appl. phys 91, 8465–8467 (2002)

    ADS  Google Scholar 

  46. Z. Yang, C.S. Wang, X.H. Li, H.X. Zeng, (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. B 90, 142–145 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of SiChuan Provincial Education Department (Nos. 13ZA0918, 14ZA0267 and 16ZA0330), the Major Project of Yibin City of China (Nos. 2012SF034, 2016GY025 and 2016QD002), Scientific Research Key Project of Yibin University (No. 2015QD13) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (No. JSWL2015KFZ04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, F., Shao, J. et al. Investigation of magnetic and structural properties of Ni–Zr co-doped M-type Sr–La hexaferrites. Appl. Phys. A 124, 129 (2018). https://doi.org/10.1007/s00339-018-1572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1572-y

Navigation