Skip to main content
Log in

On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser nanostructuring of glasses has attracted particular attention during laser decades due to its numerous applications in optics, telecommunications, sensing, nanofluidics, as well as in the development of nanocomposite materials. Despite a significant progress achieved in this field with the development and use of femtosecond laser systems, many questions remain puzzling. This study is focused on the numerical modeling of ultrashort laser interactions with glasses. Firstly, we consider laser light propagation and nonlinear ionization. Then, nanocavitation processes in glasses are modeled, followed by the hydrodynamic evolution of pores and cavities. The required conditions for nanopore formation and volume nanogratings erasure in the typical femtosecond laser-irradiation regimes are discussed in the frame of the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Hülsenberg, A. Harnisch, A. Bismarck, Microstructuring of Glasses (Springer, Berlin, 2008)

    Book  Google Scholar 

  2. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), e16133 (2016)

    Article  Google Scholar 

  3. C.B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12(11), 1784 (2001)

    Article  ADS  Google Scholar 

  4. C.B. Schaffer, A. Brodeur, J.F. García, E. Mazur, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26(2), 93–95 (2001)

    Article  ADS  Google Scholar 

  5. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)

    Article  ADS  Google Scholar 

  6. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, F. Brisset, Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7(6), 953–962 (2013)

    Article  Google Scholar 

  7. M. Lancry, F. Zimmerman, R. Desmarchelier, J. Tian, F. Brisset, S. Nolte, B. Poumellec, Nanogratings formation in multicomponent silicate glasses. Appl. Phys. B 122(3), 66 (2016)

    Article  ADS  Google Scholar 

  8. M. Scheller, C. Jansen, M. Koch, in Recent Optical and Photonic Technologies, chap. 12, ed. by K.Y. Kim (InTech, 2010). ISBN 978-953-7619-71-8. https://doi.org/10.5772/6915

  9. A.A. Francis, M.K. Abdel Rahman, A. Daoud, Processing, structures and compressive properties of porous glass-ceramic composites prepared from secondary by-product materials. Ceram. Int. 39(6), 7089–7095 (2013)

    Article  Google Scholar 

  10. A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfled, J. Krüger, J. Bonse, T.E. Itina, Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep. 7, 12306 (2017)

    Article  ADS  Google Scholar 

  11. A. Rudenko, J.-P. Colombier, T.E. Itina, Formation and erasure of ultrashort laser-induced periodic nanoporous structures in glass. PCCP (in Press) (2017)

  12. A. Rudenko, J.-P. Colombier, T.E. Itina, From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys. Rev. B 93(7), 075427 (2016)

    Article  ADS  Google Scholar 

  13. A. Rudenko, J.-P. Colombier, T.E. Itina, Influence of polarization state on ultrafast laser-induced bulk nanostructuring. J. Laser Micro/Nanoeng 11(3), 304–311 (2016)

    Article  Google Scholar 

  14. N.M. Bulgakova, R. Stoian, A. Rosenfeld, Laser-induced modification of transparent crystals and glasses. Quantum Electron. 40(11), 966 (2010)

    Article  ADS  Google Scholar 

  15. D. Albagli, M. Dark, L.T. Perelman, C. Von Rosenberg, I. Itzkan, M.S. Feld, Photomechanical basis of laser ablation of biological tissue. Opt. Lett. 19(21), 1684–1686 (1994)

    Article  ADS  Google Scholar 

  16. D.E. Grady, The spall strength of condensed matter. J. Mech. Phys. Solids 36(3), 353–384 (1988)

    Article  ADS  Google Scholar 

  17. W. Lauterborn, T. Kurz, Physics of bubble oscillations. Rep. Progress Phys. 73(10), 106501 (2010)

    Article  ADS  Google Scholar 

  18. A. Rudenko, J.-P. Colombier, T.E. Itina, Graphics processing unit-based solution of nonlinear Maxwell’s equations for inhomogeneous dispersive media. Int. J. Numer. Model. (2016). https://doi.org/10.1002/jnm.2215

    Google Scholar 

  19. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20(5), 1307–1314 (1965)

    Google Scholar 

  20. P.P. Rajeev, M. Gertsvolf, P.B. Corkum, D.M. Rayner, Field dependent avalanche ionization rates in dielectrics. Phys. Rev. Lett. 102(8), 083001 (2009)

    Article  ADS  Google Scholar 

  21. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’oliveira, P. Meynadier, M. Perdrix, Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys. Rev. B 55(9), 5799 (1997)

    Article  ADS  Google Scholar 

  22. J. Zhao, J. Sullivan, J. Zayac, T.D. Bennett, Structural modification of silica glass by laser scanning. J. Appl. Phys. 95(10), 5475–5482 (2004)

    Article  ADS  Google Scholar 

  23. P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, J.-L. Rullier, Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations. Appl. Phys. Lett. 101(21), 211908 (2012)

    Article  ADS  Google Scholar 

  24. S. Elhadj, M.J. Matthews, S.T. Yang, Combined infrared thermal imaging and laser heating for the study of materials thermophysical and processing properties at high temperatures. Crit. Rev. Solid State Mater. Sci. 39(3), 175–196 (2014)

    Article  ADS  Google Scholar 

  25. C. Mauclair, K. Mishchik, A. Mermillod-Blondin, A. Rosenfeld, I.-V. Hertel, E. Audouard, R. Stoian, Optimization of the energy deposition in glasses with temporally-shaped femtosecond laser pulses. Phys. Procedia 12, 76–81 (2011)

    Article  ADS  Google Scholar 

  26. P.K. Velpula, M.K. Bhuyan, F. Courvoisier, H. Zhang, J.-P. Colombier, R. Stoian, Spatio-temporal dynamics in nondiffractive bessel ultrafast laser nanoscale volume structuring. Laser Photonics Rev. 10(2), 230–244 (2016)

    Article  Google Scholar 

  27. N. Brouwer, B. Rethfeld, Transient electron excitation and nonthermal electron-phonon coupling in dielectrics irradiated by ultrashort laser pulses. Phys. Rev. B 95(24), 245139 (2017)

    Article  ADS  Google Scholar 

  28. C. Wang, L. Jiang, F. Wang, X. Li, Y.P. Yuan, H.-L. Tsai, First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions. Phys. Lett. A 375(36), 3200–3204 (2011)

    Article  ADS  Google Scholar 

  29. R. Le Parc, C. Levelut, J. Pelous, V. Martinez, B. Champagnon, Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour. J. Phys. Condens Matter 18(32), 7507 (2006)

    Article  ADS  Google Scholar 

  30. L. Hallo, A. Bourgeade, V.T. Tikhonchuk, C. Mezel, J. Breil, Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: blast-wave launch and cavity formation. Phys. Rev. B 76(2), 024101 (2007)

    Article  ADS  Google Scholar 

  31. R. Beuton, B. Chimier, J. Breil, D. Hébert, K. Mishchik, J. Lopez, P.H. Maire, G. Duchateau, Thermo-elasto-plastic simulations of femtosecond laser-induced multiple-cavity in fused silica. arXiv:1710.08152 (2017) (arXiv preprint)

  32. G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers. Phys. Rev. B 94(8), 081305 (2016)

    Article  ADS  Google Scholar 

  33. G. Ghosh, Model for the thermo-optic coefficients of some standard optical glasses. J. Non-crystalline Solids 189(1–2), 191–196 (1995)

    Article  ADS  Google Scholar 

  34. C.Z. Tan, J. Arndt, Temperature dependence of refractive index of glassy sio\(_{2}\) in the infrared wavelength range. J. Phys. Chem. Solids 61(8), 1315–1320 (2000)

    Article  ADS  Google Scholar 

  35. S. Najafi, A.S. Arabanian, R. Massudi, Comprehensive modeling of structural modification induced by a femtosecond laser pulse inside fused silica glass. J. Phys. D Appl. Phys. 49(25), 255101 (2016)

    Article  ADS  Google Scholar 

  36. N.S. Shcheblanov, M.E. Povarnitsyn, Bond-breaking mechanism of vitreous silica densification by ir femtosecond laser pulses. Europhys. Lett. 114(2), 26004 (2016)

    Article  ADS  Google Scholar 

  37. N.S. Shcheblanov, M.E. Povarnitsyn, K.N. Mishchik, A. Tanguy, Raman spectroscopy of femtosecond multi-pulse irradiation of vitreous silica: experiment and simulation. arXiv:1710.00571 (2017) (arXiv preprint)

  38. R.G. Kraus, S.T. Stewart, D.C. Swift, C.A. Bolme, R.F. Smith, S. Hamel, B.D. Hammel, D.K. Spaulding, D.G. Hicks, J.H. Eggert, et al., Shock vaporization of silica and the thermodynamics of planetary impact events. J. Geophys. Res. Planets 117, E09009 (2012). https://doi.org/10.1029/2012JE004082

    Article  ADS  Google Scholar 

  39. M.I. Ojovan, W.E. Lee, Viscosity of network liquids within doremus approach. J. Appl. Phys. 95(7), 3803–3810 (2004)

    Article  ADS  Google Scholar 

  40. M.I. Ojovan, Viscosity and glass transition in amorphous oxides. Adv. Condens. Matter Phys. 2008, 817829 (2008). https://doi.org/10.1155/2008/817829

    Google Scholar 

  41. T. Kumada, H. Akagi, R. Itakura, T. Otobe, A. Yokoyama, Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity. J. Appl. Phys. 115(10), 103504 (2014)

    Article  ADS  Google Scholar 

  42. S. Richter, C. Miese, S. Döring, F. Zimmermann, M.J. Withford, A. Tünnermann, S. Nolte, Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE. Opt. Mater. Express 3(8), 1161–1166 (2013)

    Article  Google Scholar 

  43. C.-Y. Shih, M.V. Shugaev, C. Wu, L.V. Zhigilei, Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: molecular dynamics study. J. Phys. Chem. C 121(30), 16549–16567 (2017). https://doi.org/10.1021/acs.jpcc.7b02301

    Article  Google Scholar 

  44. C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl. Phys. A Mater. Sci. Process. 84(1), 47–61 (2006)

    Article  ADS  Google Scholar 

  45. K. Mishchik, C. D’Amico, P.K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, R. Stoian, Ultrafast laser induced electronic and structural modifications in bulk fused silica. J. Appl. Phys. 114(13), 133502 (2013)

    Article  ADS  Google Scholar 

  46. D.G. Papazoglou, D. Abdollahpour, S. Tzortzakis, Ultrafast electron and material dynamics following femtosecond filamentation induced excitation of transparent solids. Appl. Phys. A 114(1), 161–168 (2014)

    Article  ADS  Google Scholar 

  47. T. Yoshino, Y. Ozeki, M. Matsumoto, K. Itoh, In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass. Jpn. J. Appl. Phys. 51(10R), 102403 (2012)

    Article  ADS  Google Scholar 

  48. A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation. Appl. Phys. A Mater. Sci. Process. 69(7), S373–S376 (1999)

    Article  ADS  Google Scholar 

  49. P.P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R.S. Taylor, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Memory in nonlinear ionization of transparent solids. Phys. Rev. Lett. 97(25), 253001 (2006)

    Article  ADS  Google Scholar 

  50. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass. Opt. Express 15(9), 5674–5686 (2007)

    Article  ADS  Google Scholar 

  51. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I.V. Hertel, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, R. Stoian, Dynamics of femtosecond laser induced voidlike structures in fused silica. Appl. Phys. Lett. 94(4), 041911 (2009)

    Article  ADS  Google Scholar 

  52. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Elastic and thermal dynamics in femtosecond laser-induced structural change inside glasses studied by the transient lens method. Laser Chem. 2010, 148268 (2010). https://doi.org/10.1155/2010/148268

    Article  Google Scholar 

  53. S. Richter, F. Zimmermann, A. Tünnermann, S. Nolte, Laser welding of glasses at high repetition rates-fundamentals and prospects. Opt. Laser Technol. 83, 59–66 (2016)

    Article  ADS  Google Scholar 

  54. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, S. Nolte, The onset of ultrashort pulse-induced nanogratings. Laser Photonics Rev. 10(2), 327–334 (2016)

    Article  Google Scholar 

  55. G. Cheng, A. Rudenko, C. D’Amico, T.E. Itina, J.P. Colombier, R. Stoian, Embedded nanogratings in bulk fused silica under non-diffractive bessel ltrafast laser irradiation. Appl. Phys. Lett. 110(26), 261901 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H. M. acknowledges the French Ministry of Science and Education for his PhD scholarship. A. R. acknowledges the support of LABEX MANUTECH SISE (ANR-10-LABEX-0075) of Université de Lyon, within the program Investissements d’Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR) during his PhD thesis. T. E. I. gratefully aknowledges the ITMO Fellowship Professorship program. We are also grateful to PHC “Kolmogorov” FormaLas Project and to the CINES project A002085015 in France for providing computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana E. Itina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenko, A., Ma, H., Veiko, V.P. et al. On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses. Appl. Phys. A 124, 63 (2018). https://doi.org/10.1007/s00339-017-1492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1492-2

Navigation