Skip to main content
Log in

Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Fan, K. Lee, S.R. Forrest, Flexible thin-film InGaAs photodiode focal plane array. ACS Photonics 3(4), 670–676 (2016)

    Article  Google Scholar 

  2. H. Figgemeier, M. Benecke, K. Hofmann, R. Oelmaier, A. Sieck, J. Wendler, J. Ziegler, SWIR detectors for night vision at AIM. Proc. SPIE 9070, 907008 (2014)

    Article  Google Scholar 

  3. J. Zhang, M.A. Itzler, H. Zbinden, J.-W. Pan, Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 4, e286 (2015)

    Article  Google Scholar 

  4. R.H. Hadfield, Single photon detectors for optical quantum information applications. Nat. Photon 3, 696 (2009)

    Article  ADS  Google Scholar 

  5. F. Rutz, P. Kleinow, R. Aidam, H. Heussen, W. Bronner, A. Sieck, M. Walther, SWIR photodetector development at Fraunhofer IAF. Proc. SPIE 9481, 948107 (2015)

    Article  Google Scholar 

  6. A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys 105, 091101 (2009)

    Article  ADS  Google Scholar 

  7. H. Inada, K. Machinaga, S. Balasekaran, K. Miura, T. Kawahara, M. Migita, K. Akita, Y. Iguchi, Recent development of SWIR focal plane array with InGaAs/GaAsSb type-II quantum wells. Proc. SPIE 9819, 98190C (2016)

    Article  ADS  Google Scholar 

  8. M. Verdun, G. Beaudoin, B. Portier, N. Bardou, C. Dupuis, I. Sagnes, R. Haidar, F. Pardo, J.-L. Pelouard, Dark current investigation in thin P-i-N InGaAs photodiodes for nano-resonators. J. Appl. Phys 120, 084501 (2016)

    Article  ADS  Google Scholar 

  9. T. Asar, S. Ozcelik, E. Ozbay, Structural and electrical characterizations of Inx Ga1–x As/InP structures for infrared photodetector applications. J. Appl. Phys. 115, 104502 (2014)

    Article  ADS  Google Scholar 

  10. R. Dewames, R. Littleton, K. Witte, A. Wichman, E. Bellotti, J. Pellegrino, Electro-optical characteristics of P+n In0.53Ga0.47As hetero-junction photodiodes in large format dense focal plane arrays. J. Electron Mater. 44(8), 2813–2822 (2015)

    Article  ADS  Google Scholar 

  11. J. Ma, Z. Zhang, G. Miao, Y. Zhao, Design and performance analysis of extended wavelength InGaAs near-infrared photodetectors. Jap. J. Appl. Phys. 54, 10431 (2015)

    Article  Google Scholar 

  12. M. MacDougal, J. Geske, C. Wang, S. Liao, J. Getty, A. Holmes, Low dark current InGaAs detector arrays for night vision and astronomy. Proc. SPIE 7298, 72983F (2009)

    Article  ADS  Google Scholar 

  13. Q.Y. Zeng, W.J. Wang, J. Wen, L. Huang, X.H. Liu, N. Li, W. Lu, Effect of surface charge on the dark current of InGaAs/InP avalanche photodiodes. J. Appl. Phys. 115, 164512 (2014)

    Article  ADS  Google Scholar 

  14. A. Wieczorek, V. Djara, F.H. Peters, J. O’Callaghan, K. Thomas, B. Corbett, Inductively coupled plasma deep etching of InP/InGaAsP in Cl2/CH4/H2 based chemistries with the electrode at 20 °C. J. Vac. Sci. Technol. B 30(5), 051208 (2012)

    Article  Google Scholar 

  15. S.R. Forrest, Performance of InxGa1–xAsyP1–y photodiodes with dark current limited by diffusion, generation recombination, and tunnelling. IEEE J. Quantum Electron 17(2), 217–226 (1981)

    Article  ADS  Google Scholar 

  16. A. Averbuch, G. Liron, B.Z. Bobrovsky, Scene based nonuniformity correction in thermal images using Kalman filter. Image Vision Comput. 25(6), 833–851 (2007)

    Article  Google Scholar 

  17. M.J. Cohen, M.H. Ettenberg, M.J. Lange, G.H. Olsen, An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging Report (Sensors Unlimited Inc., Princeton, 1999)

Download references

Acknowledgements

Authors thank Director, SSPL Delhi for permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Singh.

Appendix

Appendix

The effective carrier lifetime for electron (τ e) and hole (τ p) is given as

$${\tau _{\text{e}}}=\frac{1}{{\left[ {{G_{{\text{ee}}}}\frac{n}{{n_{0}^{2}{p_0}}}+{G_{{\text{hh}}}}\frac{{{p_0}}}{{{n_0}p_{0}^{2}}}+{G_{{\text{RAD}}}}{{\frac{1}{{{n_0}p}}}_0}} \right].\gamma +\frac{1}{{{\tau ^{{\text{SRH}}}}}}}}$$
(1)
$${\tau _{\text{p}}}=\frac{1}{{\left[ {{G_{{\text{ee}}}}\frac{n}{{n_{0}^{2}{p_0}}}+{G_{{\text{hh}}}}\frac{{{p_0}}}{{{n_0}p_{0}^{2}}}+{G_{{\text{RAD}}}}{{\frac{1}{{{n_0}p}}}_0}} \right].\delta +\frac{1}{{{\tau ^{{\text{SRH}}}}}}}}$$
(2)

where τ SRH = SRH life time. The n 0 and p 0 are carrier concentration for electron and hole at thermal equilibrium, respectively. G ee, G hh and G RAD are respective generation rate. The γ and δ are given as

$$\gamma ={n_0}+{p_0}+{n_0}{N_T}.\left[ {\frac{{{\tau _{{p_0}}}(1 - f_{T}^{0}) - {\tau _{_{{{e_0}}}}}f_{T}^{0}}}{{{\tau _{{e_0}}}f_{T}^{0}{N_T}+{\tau _{{e_0}}}({p_0}+\alpha {p_1})+{\tau _{{p_0}}}({n_0}+{\alpha ^{ - 1}}{n_1})}}} \right]$$
(3)
$$\delta ={n_0}+{p_0}+{p_0}{N_T}.\left[ {\frac{{{\tau _{{e_0}}}f_{T}^{0} - {\tau _{{p_0}}}(1 - f_{T}^{0})}}{{{\tau _{{p_0}}}(1 - f_{T}^{0}){N_T}+{\tau _{{e_0}}}({p_0}+\alpha {p_1})+{\tau _{{p_0}}}({n_0}+{\alpha ^{ - 1}}{n_1})}}} \right]$$
(4)

where N T is the trap density, α is the absorption coefficient and f T is the Fermi level in the trap states.

Total SRH lifetime is given as

$$\frac{1}{{{\tau _{{\text{SRH}}}}}}=\frac{1}{{{\tau _{{\text{vac}}}}}}+\frac{1}{{{\tau _{{\text{ext}}}}}}$$
(5)

Empirically fitted formulation for lifetime in InGaAs is given as (N = doping density):

$$\tau ={[\tau _{{{\text{SRH}}}}^{{ - 1}}+BN+C{N^2}]^{ - 1}}$$
(6)

where τ SRH = 47.4 μs, B = 1.43 × 10−10 cm−3 s−1, C = 8.1 × 10−29 cm−6 s−1.

Surface recombination velocity (s) is given as

$$s=\frac{{{{({K_{\text{n}}}{K_{\text{p}}})}^{1/2}}{N_{\text{T}}}(n+p)}}{{2{n_{\text{i}}}\left[ {\cosh \left\{ {\left( {\frac{{{E_{\text{f}}} - {E_{\text{i}}}}}{{kT}}} \right) - {\psi _0}} \right\}+\cosh \left( {{\psi _{\text{s}}} - {\psi _0}} \right)} \right]}}$$
(7)
$$\frac{s}{{{s_{\hbox{max} }}}}=\frac{{\cosh \left[ {\left( {\frac{{{E_{\text{f}}} - {E_{\text{i}}}}}{{kT}}} \right) - {\psi _0}} \right]+1}}{{\cosh \left[ {\left( {\frac{{{E_{\text{f}}} - {E_{\text{i}}}}}{{kT}}} \right) - {\psi _0}} \right]+\cosh ({\psi _{\text{s}}} - {\psi _0})}}$$
(8)

where Ψ s and Ψ 0 are the surface potential and bulk potential, respectively. K n and K p are the probability of capturing electron and hole, respectively; K n = 2–6 × 1015 cm2, K p = 1–3 × 1015 cm2 and \({\psi _{\text{s}}}=\frac{{qNW}}{{2{\varepsilon _{\text{s}}}}}\)

$$G - R{\text{ bulk contribution is given as}},{I_{{\text{gr}}}}=\frac{{q{n_{\text{i}}}f(b)}}{{{\tau _{{\text{eff}}}}}}W{A_{\text{j}}}$$
(9)

where A j and W are area and width of the junction. The n i and τ eff are intrinsic carrier concentration and effective life time, respectively. \(f(b)=\frac{{\left| {{E_{\text{t}}} - {E_{\text{i}}}} \right|/kT}}{{\exp \left( {\left| {{E_{\text{t}}} - {E_{\text{i}}}} \right|/kT} \right)}}\); In general f(b) ~ 1 is taken.

GR surface contribution in the mesa geometry is given as

$${I_{{\text{gr}}}}=\frac{{q{n_{\text{i}}}f(b)}}{{{\tau _{{\text{eff}}}}}}[{A_{\text{s}}}.{d_{\text{s}}}]=\frac{{q{n_{\text{i}}}f(b)}}{{{\tau _{{\text{eff}}}}}}[4A_{{\text{j}}}^{{1/2}}.W.{d_{\text{s}}}]$$
$${I_{{\text{gr}}}}={\text{ }}q{\text{ }}{n_{\text{i}}}f\left( b \right){\text{ }}\left[ {{P_{\text{j}}}W} \right]{\text{ }}.s{\text{ }};{\text{ where }}{P_{\text{j}}}\left( {{\text{perimeter of the diode}}} \right){\text{ }}={\text{ }}4.{\text{ }}{A_{\text{j}}}^{{1/2}}$$
(10)

where collection area, A o,p = (A j 1/2 + 2L e)2; L e is diffusion length of electron.

The photo current is given as

$${I_{{\text{ph}}}}=q.A.\left[ {\int\limits_{{{\lambda _1}}}^{{{\lambda _2}}} {{\eta _{(\lambda )}}.} {\phi _{(\lambda ,T)}}.d\lambda } \right]$$
(11)

Quantum efficiency (η) is given as

$$\eta =\frac{{(1 - R)\alpha {L_{\text{e}}}}}{{{\alpha ^2}L_{{\text{e}}}^{2} - 1}}\exp \left\{ {\left( { - \alpha ({W_{\text{f}}}+{W_{\text{j}}})} \right)} \right\}.\left[ {\alpha {L_{\text{e}}} - \frac{{\frac{{{S_{\text{e}}}{L_{\text{e}}}}}{{{D_{\text{e}}}}}(\cosh \frac{{{W_{\text{b}}}}}{{{L_{\text{e}}}}} - \exp ( - \alpha {W_{\text{b}}}))+\sinh \frac{{{W_{\text{b}}}}}{{{L_{\text{e}}}}}+\alpha {L_{\text{e}}}\exp ( - \alpha {W_{\text{b}}})}}{{\left(\frac{{{S_{\text{e}}}{L_{\text{e}}}}}{{{D_{\text{e}}}}}.\sinh \frac{{{W_{\text{b}}}}}{{{L_{\text{e}}}}}+\cosh \frac{{{W_{\text{b}}}}}{{{L_{\text{e}}}}}\right)}}} \right]$$
(12)

where R is the back side reflection of infrared radiation. The W f, W j and W b are the thickness of the front region, junction region and back side region, respectively. The thickness of back side region changes with the variation of the absorber layer.

The number of electrons collected from the detector as a function of irradiance and IR background is given as

$${\text{No}}.{\text{ of electrons }}=\left( {\frac{{{I_{\text{d}}}+{I_{{\text{ph}}}}}}{q}} \right).q.\eta .M$$
(13)

where t i is the integration time, M is the avalanche gain, and η i is the injection efficiency for a DI/BDI circuit. The I d and I ph are the dark current and photo current, respectively.

Then, NEPh is given as

$${\text{NEPh}}=\frac{1}{{M\eta }}\sqrt {\frac{{{I_{\text{d}}}{\tau _{{\text{gate}}}}{M^2}F(M)}}{q}}$$
(14)

where F(M) = excess noise factor and τ gate = integration period.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Pal, R. Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging. Appl. Phys. A 123, 701 (2017). https://doi.org/10.1007/s00339-017-1321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1321-7

Navigation