Skip to main content
Log in

Spinel ferrite nanoparticles for H2S gas sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate H2S gas sensors based on spinel ferrite CuFe2O4 nanoparticles prepared by the co-precipitation method. This technique is an efficient and fast technique to produce nanoparticles. Furthermore, those nanoparticles are metal-oxide nanoparticles with magnetic properties that enable their retrieval and reuse for mutable times and applications. The produced nanoparticles are pressed in a form of disc, and placed between two electrical electrodes, with the top electrode with a grid structure to enable gas exposure. The study includes investigations of crystal structure, composition, morphology, and charge transport. The results revel that the produced nanoparticles are sensitive and selective to H2S which indicate their potential to be used for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.K. Heiba, M. Bakr Mohamed, L. Arda, N. Dogan, Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J. Magn. Magn. Mater. 391, 195–202 (2015)

    Article  ADS  Google Scholar 

  2. M.A. Haija, A.I. Ayesh, S. Ahmed, M.S. Katsiotis, Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film. Appl. Surf. Sci. 369, 443–447 (2016)

    Article  ADS  Google Scholar 

  3. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle. Appl. Phys. A Mater. Sci. Process. 123, 1–9 (2017)

  4. Z. Cui, Z. Zhang, C. Hao, L. Dong, M. Zhaoguo, L. Yu, Structures and properties of nano-particles prepared by hydrogen arc plasma method. Thin Solid Films 318, 76–82 (1998)

    Article  ADS  Google Scholar 

  5. A.I. Ayesh, N. Qamhieh, S.T. Mahmoud, H. Alawadhi, Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering. J. Mater. Res. 27, 2441–2446 (2012)

    Article  ADS  Google Scholar 

  6. M.Y. Haik, A.I. Ayesh, T. Abdulrehman, Y. Haik, Novel organic memory devices using Au–Pt–Ag nanoparticles as charge storage elements. Mater. Lett. 124, 67–72 (2014)

    Article  Google Scholar 

  7. T. Tanabe, S. Kameoka, A.P. Tsai, Evolution of microstructure induced by calcination in leached Al–Cu–Fe quasicrystal and its effects on catalytic activity. J. Mater. Sci. 46, 2242–2250 (2011)

    Article  ADS  Google Scholar 

  8. M. Sangmanee, S. Maensiri, Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl. Phys. A Mater. Sci. Process. 97, 167–177 (2009)

    Article  ADS  Google Scholar 

  9. J. Polanski, T. Siudyga, P. Bartczak, M. Kapkowski, W. Ambrozkiewicz, A. Nobis, R. Sitko, J. Klimontko, J. Szade, J. Lelątko, Oxide passivated Ni-supported Ru nanoparticles in silica: a new catalyst for low-temperature carbon dioxide methanation. Appl. Catal., B 206, 16–23 (2017)

    Article  Google Scholar 

  10. A.I. Ayesh, A.F.S. Abu-Hani, S.T. Mahmoud, Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes. Sens. Actuators B 231, 593–600 (2016)

    Article  Google Scholar 

  11. A.I. Ayesh, S.T. Mahmoud, S.J. Ahmad, Y. Haik, Novel hydrogen gas sensor based on Pd and SnO2 nanoclusters. Mater. Lett. 128, 354–357 (2014)

    Article  Google Scholar 

  12. A.I. Ayesh, Linear hydrogen gas sensors based on bimetallic nanoclusters. J. Alloys Compd. 689, 1–5 (2016)

    Article  Google Scholar 

  13. M.M. Hussain, M.M. Rahman, A.M. Asiri, Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J. Environ. Sci. 53, 27–38 (2017). doi:10.1016/j.jes.2016.03.028

    Article  Google Scholar 

  14. H. Hou, G. Xu, S. Tan, Y. Zhu, A facile sol–gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: influence of the synthesis conditions. Infrared Phys. Technol. 85, 261–265 (2017)

    Article  ADS  Google Scholar 

  15. M.A. Haija, A.F.S. Abu-Hani, N. Hamdan, S. Stephen, A.I. Ayesh, Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloys Compd. 690, 461–468 (2017)

    Article  Google Scholar 

  16. A.V. Nakhate, G.D. Yadav, Hydrothermal synthesis of CuFe2O4 magnetic nanoparticles as active and robust catalyst for N-arylation of indole and imidazole with aryl halide. ChemistrySelect. 2, 2395–2405 (2017)

    Article  Google Scholar 

  17. V. Azizkhani, F. Montazeri, E. Molashahi, A. Ramazani, Magnetically recyclable Cufe2O4 nanoparticles as an efficient and reusable catalyst for the green synthesis of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazaisowurtzitane as CL-20 explosive precursor. J. Energ. Mater. 35, 314–320 (2017)

    Article  Google Scholar 

  18. H. Naeimi, A. Didar, Z. Rashid, Microwave-assisted synthesis of pyrido-dipyrimidines using magnetically CuFe2O4 nanoparticles as an efficient, reusable, and powerful catalyst in water. J. Iran. Chem. Soc. 14, 377–385 (2017)

    Article  Google Scholar 

  19. A.F.S. Abu-Hani, F. Awwad, Y.E. Greish, A.I. Ayesh, S.T. Mahmoud, Design, fabrication, and characterization of low-power gas sensors based on organic-inorganic nano-composite. Org. Electron. 42, 284–292 (2017)

    Article  Google Scholar 

  20. Y. Wang, F. Kong, B. Zhu, S. Wang, S. Wu, W. Huang, Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption. Mater. Sci. Eng. B 140, 98–102 (2007)

    Article  Google Scholar 

  21. J.M. Aguirre, A. Gutiérrez, O. Giraldo, Simple route for the synthesis of copper hydroxy salts. J. Braz. Chem. Soc. 22, 546–551 (2011)

    Article  Google Scholar 

  22. L. Luo, R. Cui, H. Qiao, K. Chen, Y. Fei, D. Li, Z. Pang, K. Liu, Q. Wei, High lithium electroactivity of electrospun CuFe2O4 nanofibers as anode material for lithium-ion batteries. Electrochim. Acta 144, 85–91 (2014)

    Article  Google Scholar 

  23. S.S. Shinde, R.A. Bansode, C.H. Bhosale, K.Y. Rajpure, Physical properties of hematite α-Fe2O3 thin films: application to photoelectrochemical solar cells. J. Semicond. 32, 013001 (2011)

    Article  ADS  Google Scholar 

  24. R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites. Bull. Mater. Sci. 23, 273–279 (2000)

    Article  Google Scholar 

  25. C.A. Neugebauer, M.B. Webb, Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 33, 74 (1962)

    Article  ADS  Google Scholar 

  26. A.I. Ayesh, Electronic transport in Pd nanocluster devices. Appl. Phys. Lett. 98, 133108 (2011)

    Article  ADS  Google Scholar 

  27. A.I. Ayesh, A.F.S. Abu-Hani, S.T. Mahmoud, Y. Haik, Selective H2S sensor based on CuO nanoparticles embedded in organic membranes. Sens. Actuators B Chem. doi:10.1016/j.snb.2016.03.078

  28. C. Jin, H. Kim, S. An, C. Lee, Highly sensitive H2S gas sensors based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation. Ceram. Int. 38, 5973–5978 (2012)

    Article  Google Scholar 

  29. J. Liu, X. Huang, G. Ye, W. Liu, Z. Jiao, W. Chao, Z. Zhou, Z. Yu, H2S detection sensing characteristic of CuO/SnO2 sensor. Sensors. 3, 110–118 (2003)

    Article  Google Scholar 

  30. F.-N. Meng, X.-P. Di, H.-W. Dong, Y. Zhang, C.-L. Zhu, C. Li, Y.-J. Chen, Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sens. Actuators B. 182, 197–204 (2013)

    Article  Google Scholar 

  31. A.B. Gadkari, T.J. Shinde, P.N. Vavambekar, Ferrite gas sensors. IEEE Sens. J. 11, 849–861 (2011)

Download references

Acknowledgements

This work was supported by the Petroleum Institute under Grant No. RIFP-14312 and Qatar University under Grant No. QUUG-CAS-DMSP-15\16–20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad I. Ayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayesh, A.I., Abu Haija, M., Shaheen, A. et al. Spinel ferrite nanoparticles for H2S gas sensor. Appl. Phys. A 123, 682 (2017). https://doi.org/10.1007/s00339-017-1305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1305-7

Navigation