Skip to main content

Advertisement

Log in

Impedance spectroscopy study and phase transition in phospho-vanadium mixed oxide LiZnV0.5P0.5O4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An X-ray crystallographic study has allowed us to identify a powder of the type LiZnV0.5P0.5O4, which contains 50% of vanadium and 50% of phosphore, inside the binary system LiZnVO4–LiZnPO4. The structure is isotypic with the phenacite like LiZnP04. X-ray diffraction patterns are indexed according to the lattice parameters of the rhombohedral system and the R3 space group. IR spectra show the presence of VO4 and PO4 groups in the network of this material. The experimental results indicate that \(\sigma_{\text{AC}}\)(\(\omega\)) is proportional to \(\left( {\omega^{n} } \right)\). The activation energy found from the Arrhenius plot confirms that the conduction processing of the material is not due to simple hopping mechanism. The temperature dependence of frequency exponent n was investigated to understanding the conduction mechanism in LiZnV0.5P0.5O4. The non-overlapping small Polaron tunneling (NSPT) model can explain the temperature dependence of the frequency exponent. A phase transition at T = 623 K has been evidenced by Differential scanning calorimetry (DSC) and subsequently confirmed by the analysis of dielectric and electric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.K. Pahdi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188–1194 (1997)

    Article  Google Scholar 

  2. M. Azrour, L. Bih, L. El Ammari, D. Mezzane, A. Alimoussa, B. Elouadi, J. Condens. Mater. 7, 28–31 (2006)

    Google Scholar 

  3. J. Luke, Y. Chang, F.Y. Wang, J. Am Ceram. Soc. 71, 689–693 (1988)

    Article  Google Scholar 

  4. M. Azrour, L. Elammari, W. Depmeier, B. Elouadi. Ann. Chim. Sci. Mat. 23, 251–254 (1998)

    Article  Google Scholar 

  5. C.M. Julien, P. Jozwiak, J. Garbarczyk. 9, 1–12 (2004)

    Google Scholar 

  6. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Mater, Chem. Phys. 99, 150–159 (2006)

    Google Scholar 

  7. D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics 8, 159–164 (1983)

    Article  Google Scholar 

  8. A. Zaafouri, M. Megdiche, M. Gargouri, J Alloys Comp. 584, 152 (2014)

    Article  Google Scholar 

  9. R. Ben Said, B. Louati, K. Guidara, S. Kamoun, Solid State Ionics 20, 1071–1078 (2014)

    Google Scholar 

  10. B. HaibadoMahamoud, F. Louati, K. Hlel, K. Guidara, J. Alloy. Compd. 509, 6083–6089 (2011)

    Article  Google Scholar 

  11. I. Belharouak, P. Gravereau, C. Parent, J.P. Chaminade, E. Lebraud, G. Le Flem, Solid State Chem. 152, 466–473 (2000)

    Article  ADS  Google Scholar 

  12. A.K. Jonscher, Nature 267, 673–697 (1977)

    Article  ADS  Google Scholar 

  13. S.R. Elliott, Solid State Ionics 70, 27–40 (1994)

    Article  Google Scholar 

  14. S.R. Elliott, Adv. Phys. 36, 135–217 (1987)

    Article  ADS  Google Scholar 

  15. S. Nasri, M. Megdiche, K. Guidara, M. Gargouri, Ionics 19, 1921–1931 (2013)

    Article  Google Scholar 

  16. A. Ghosh, Phys Rev. B 42, 5675 (1990)

    Article  ADS  Google Scholar 

  17. N. Zouari, H. Khemakhem, M. Gargouri, M. Mnif, T. Mhiri, A. Daoud, Phys. Stat. Solid b 213, 219 (1999)

    Article  ADS  Google Scholar 

  18. S. Nasri, M. Megdiche, M. Gargouri, K. Guidara, Ionics 20, 399–407 (2014)

    Article  Google Scholar 

  19. C.T. Moynihan, L.B. Boesch, N.L. Laberge, Phys Chem. Glasse. 14, 122 (1973)

    Google Scholar 

  20. H. Kolodziej, L. Sobczyk, Acta Phys Polon. A 39, 59 (1971)

    Google Scholar 

  21. X. Qian, N. Gu, Z. Cheng, X. Yang, S. Dong, Electronichim Acta. 46, 1829 (2001)

    Article  Google Scholar 

  22. P.B. Macedo, C.T. Mognihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  23. G.S. Nadkarni, J.G. Simmons, J. Appl. Phys. 41, 545 (1970)

    Article  ADS  Google Scholar 

  24. K. Karoui, A. Ben Rhaim, K. Guidar, Phys. B 407, 489 (2012)

    Article  ADS  Google Scholar 

  25. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  26. R. Bergman, Appl. Phys. 88, 1356 (2000)

    Article  Google Scholar 

  27. C.T. Moynihan, L.P. Boesch, N.L. Laberge, Phys. Chem. Glasses 14, 122 (1973)

    Google Scholar 

  28. G. Williams, D.C. Watts, S.B. Dev, Trans Faraday Soc. 67, 1323–1335 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rahal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahal, A., Megdiche Borchani, S., Guidara, K. et al. Impedance spectroscopy study and phase transition in phospho-vanadium mixed oxide LiZnV0.5P0.5O4 . Appl. Phys. A 123, 559 (2017). https://doi.org/10.1007/s00339-017-1166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1166-0

Navigation