Skip to main content
Log in

Low-temperature photoluminescence study of ZnO:Ni nanowires

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO:Ni nanowires have been fabricated through high-temperature vapor–solid deposition process. The morphology of the as-prepared samples was characterized by scanning electron microscopy. The temperature dependent of photoluminescence spectra was investigated. The low-temperature photoluminescence spectrum at 10–150 K shows that there is a multi-peak emission in the UV region. The multi-peak emissions are attributed to neutral acceptor-bound exciton, free electron to acceptor transition (FA), and first- and second-longitudinal optical phonon replicas emission (FA-1LO and FA-2LO), respectively. With increasing temperature, these bands show different temperature dependences. The FA and FA-1LO bands show a normal redshift with the increasing temperature, while the FX and FA-2LO bands exhibit an anomalous behavior. The origins of these bands and their temperature-dependent shifts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P.D. Yang, Nature (London) 447, 1098 (2007)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, Adv. Mater. 19, 889 (2007)

    Article  Google Scholar 

  3. R. Siddheswaran, J. Savková, R. Medlín, J. Očenášek, O. Životský, P. Novak et al., Appl. Surf. Sci. 316, 524 (2014)

    Article  ADS  Google Scholar 

  4. K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta A 120, 19 (2014)

    Article  Google Scholar 

  5. T. Jan, J. Iqbal, M. Ismail, Q. Mansoor, A. Mahmood, A. Ahmad, Appl. Surf. Sci. 308, 75 (2014)

    Article  ADS  Google Scholar 

  6. N. Goswami, A. Sahai, Mater. Res. Bull. 48, 346 (2013)

    Article  Google Scholar 

  7. X. Chu, X. Zhu, Y. Dong, T. Chen, M. Ye, W. Sun, J. Electroanal. Chem. 676, 20 (2012)

    Article  Google Scholar 

  8. S. Yilmaz, E. McGlynn, E. Bacaksiz, J. Cullen, R.K. Chellappan, Chem. Phys. Lett. 525–526, 72 (2012)

    Article  Google Scholar 

  9. H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, J. Am. Chem. Soc. 127, 16376 (2005)

    Article  Google Scholar 

  10. S. Filippov, X.J. Wang, M. Devika, N. Koteeswara, C.W. Tu, W.M. Chen, I.A. Buyanova, J. Appl. Phys. 113, 214302 (2013)

    Article  ADS  Google Scholar 

  11. K.H. Kim, Z.G. Jin, Y. Abe, M. Kawamura, Mater. Lett. 149, 8 (2015)

    Article  Google Scholar 

  12. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 2001, 291 (1947)

    Google Scholar 

  13. A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth et al., Phys. Rev. B 70, 195207 (2004)

    Article  ADS  Google Scholar 

  14. D.W. Hamby, D.A. Lucca, M.J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003)

    Article  ADS  Google Scholar 

  15. B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, Appl. Phys. Lett. 83, 1635 (2003)

    Article  ADS  Google Scholar 

  16. D.K. Hwang, H.S. Kim, J.H. Lim, J.Y. Oh, J.H. Yang, S.J. Park et al., Appl. Phys. Lett. 86, 151917 (2005)

    Article  ADS  Google Scholar 

  17. X.H. Pan, W. Guo, Z.Z. Ye, B. Liu, Y. Che, H.P. He et al., J. Appl. Phys. 105, 113516 (2009)

    Article  ADS  Google Scholar 

  18. Y.P. Varshni, Physica (Amsterdam) 34, 149 (1967)

    Article  ADS  Google Scholar 

  19. R. Kudrawice, G. Sek, J. Misiewicz, L.H. Li, J.C. Harmand, Appl. Phys. Lett. 83, 1379 (2003)

    Article  ADS  Google Scholar 

  20. C.K. Kim, Y.H. Lee, Appl. Phys. Lett. 79, 3038 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 61601397 and 60277023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Zhang, J. Low-temperature photoluminescence study of ZnO:Ni nanowires. Appl. Phys. A 123, 548 (2017). https://doi.org/10.1007/s00339-017-1157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1157-1

Navigation