Skip to main content
Log in

Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson’s ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007)

    Article  Google Scholar 

  2. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4, 2979 (2010)

    Article  Google Scholar 

  3. P. Russo, A. Hu, G. Compagnini, Nano Micro Lett. 5, 260 (2013)

    Article  Google Scholar 

  4. S. Zhang, G. Lian, H. Si, J. Wang, X. Zhang, Q. Wang, D. Cui, J. Mater. Chem. A 1, 5105 (2013)

    Article  Google Scholar 

  5. M. Mogharabi, M. Abdollahi, M.A. Faramarzi, DARU. J. Pharm. Sci. 22, 23 (2014)

    Article  Google Scholar 

  6. A. Pakdel, C. Zhia, Y. Bandoa, D. Golberg, Materialstoday 15, 256 (2012)

    Google Scholar 

  7. A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang, Y. Bando, Appl. Phys. Lett. 84, 2527 (2004)

    Article  ADS  Google Scholar 

  8. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Scripta Mater. 44, 1561 (2001)

    Article  Google Scholar 

  9. Y. Xiao, X.H. Yan, J.X. Cao, J.W. Ding, Y.L. Mao, J. Xiang, Phys. Rev. B 69, 205415 (2004)

    Article  ADS  Google Scholar 

  10. C.W. Chang, W.Q. Han, A. Zettl, Appl. Phys. Lett. 86, 173102 (2005)

    Article  ADS  Google Scholar 

  11. Y. Chen, J. Zou, S.J. Campbell, G.L. Caer, Appl. Phys. Lett. 84, 2430 (2004)

    Article  ADS  Google Scholar 

  12. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994)

    Article  ADS  Google Scholar 

  13. X. Wang, C. Zhi, Q. Weng, Y. Bando, D. Golberg, J. Phys. Conf. Ser. 471, 012003 (2013)

    Article  Google Scholar 

  14. T. Natsuki Electronics 2015 4, 1 (2015)

    Google Scholar 

  15. T. Natsuki, N. Matsuyama, Q.-Q. Ni, Appl. Phys. A 120, 1309 (2015)

    Article  ADS  Google Scholar 

  16. L. Jin, L. Li, Electron Device Lett. IEEE 36, 68 (2015)

    Article  ADS  Google Scholar 

  17. T. Natsuki, K. Tantrakarn, M. Endo, Appl. Phys. A 79, 117 (2004)

    Article  ADS  Google Scholar 

  18. T. Natsuki, M. Endo, Appl. Phys. A 80, 1468 (2005)

    Article  ADS  Google Scholar 

  19. G. Cao Polymers 2014 6, 2404 (2014)

    Google Scholar 

  20. J. Wu, B. Wang, Y. Wei, R. Yang, M. Dresselhaus, Mater. Res. Lett. 1, 200 (2013)

    Article  Google Scholar 

  21. C. Li, T.W. Chou, J Nanosci Nanotechnol 6, 54 (2006)

    Google Scholar 

  22. E.S. Oh, Mater. Lett 64, 859 (2010)

    Article  Google Scholar 

  23. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. GoddardIII, W.M. Skiff, UFF. J. Am. Chem. Soc. 114, 10024 (1992)

    Article  Google Scholar 

  24. L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Nanotechnology 22, 1 (2011)

    Article  Google Scholar 

  25. L. Chkhartishvili, J. Phys. Conf. Ser. 176, 012014 (2009)

    Article  Google Scholar 

  26. O. Hod, J. Chem Theory Comput 8, 1360 (2012)

    Article  Google Scholar 

  27. S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem 94, 8897 (1990)

    Article  Google Scholar 

  28. L. Jiang, W. Guo, J. Mech. Phys. Solids 59, 1204 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  30. H. Zhao, K. Min, N.R. Aluru, Nano Lett. 9, 3012 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Natsuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natsuki, T., Natsuki, J. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model. Appl. Phys. A 123, 283 (2017). https://doi.org/10.1007/s00339-017-0884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0884-7

Keywords

Navigation