Skip to main content
Log in

Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The interface states and series resistance properties of the Al/FeO-Al2O3/p-Si diode were investigated by the capacitance (C) and conductance (G) measurements. The measured capacitance and conductance values were corrected to eliminate the effect of series resistance to obtain the real capacitance and conductance values of the diode. The C and G characteristics indicate the presence of interface states at the interface of the diode. The interface states density, N ss, was determined using Hill–Coleman method, and it was found that the density of interface states is decreased with the frequency. The obtained results suggest that the series resistance and interface states affect significantly the electronic parameters of the Al/FeO-Al2O3/p-Si diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.M. Ramay, S.A. Siddiqi, S. Atiq, M.S. Awan, S. Riaz, Chin. J. Chem. Phys. 23, 591 (2010)

    Article  Google Scholar 

  2. K. Ellmer, J. Phys. D Appl. Phys. 34, 3097 (2001)

    Article  ADS  Google Scholar 

  3. E.E. Sileo, L.G. Rodenas, C.O. Paiva-Santos, P.W. Stephens, P.J. Morando, M.A. Blesa, J. Solid State Chem. 179, 2237 (2006)

    Article  ADS  Google Scholar 

  4. R.N. Bhowmik, Compos. Part B: Eng. 43, 503 (2012)

    Article  Google Scholar 

  5. R.N. Bhowmik, N. Naresh, Int. J. Eng. Sci. Technol. 2, 40 (2009)

    Google Scholar 

  6. J. Chand, G. Kumar, P. Kumar, S.K. Sharma, M. Knobel, M. Singh, J. Alloys Compds. 509, 9638 (2011)

    Article  Google Scholar 

  7. A.T. Raghavender, K.M. Jadhav, Bull. Mater. Sci. 32, 575 (2009)

    Article  Google Scholar 

  8. R. Rani, G. Kumar, K.M. Batoo, M. Singh, Am. J. Nanomater. 1, 9 (2013)

    Google Scholar 

  9. M.K. Shobana, S. Sankar, V. Rajendran, Mater. Chem. Phys. 113, 10 (2009)

    Article  Google Scholar 

  10. W.C. Kim, S.J. Kim, S.W. Lee, C.S. Kim, J. Magn. Magn. Mater. 226, 1418 (2001)

    Article  ADS  Google Scholar 

  11. M.H. Khedr, Physicochem. Probl. Miner. Process. 38, 311 (2004)

    Google Scholar 

  12. A.V. Kadu, S.V. Jagtap, G.N. Chaudhari, Curr. Appl. Phys. 9, 1246 (2009)

    Article  ADS  Google Scholar 

  13. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  14. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  15. A.M. Cowley, S.M. Sze, J. Appl. Phys. 36, 3212 (1965)

    Article  ADS  Google Scholar 

  16. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965)

    Article  ADS  Google Scholar 

  17. A. Tataroğlu, A.A. Hendi, R.H. Alorainy, F. Yakuphanoglu, Chin. Phys. B 23(5), 057504 (2014)

    Article  ADS  Google Scholar 

  18. H. Jiao, G. Jiao, J. Wang, Synth. React. Inorganic, Metal-Org. Nano-Met. Chem. 43, 131 (2013)

    Article  MathSciNet  Google Scholar 

  19. D.P. Duttaa, G. Sharma, Materi. Sci. Eng. B 176, 177–180 (2011)

    Article  Google Scholar 

  20. U. Kelberlau, R. Kassing, Solid-State Electron. 22, 37 (1979)

    Article  ADS  Google Scholar 

  21. S. Wageh, A.A. Al-Ghamdi, Y. Al-Turki, A. Dere, S.C. Tjong, F. El-Tantawy, F. Yakuphanoglu, Opt. Quantum Electron. 47, 1779 (2015)

    Article  Google Scholar 

  22. J. Szatkowski, K. Sieranski, Solid-State Electron. 35, 1013 (1992)

    Article  ADS  Google Scholar 

  23. J.H. Werner, Metallization and Metal-Semiconductor Interface (Plenum, New York, 1989)

    Google Scholar 

  24. P. Matheswaran, R. Sathyamoorthy, R. Saravanakumar, S. Velumani, Mater. Sci. Eng., B 174, 269 (2010)

    Article  Google Scholar 

  25. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Stat. Sol. (a) 199, 507 (2003)

    Article  ADS  Google Scholar 

  26. M. Soylu, F. Yakuphanoglu, I.S. Yahia, Microelectron. Reliab. 52, 1355–1361 (2012)

    Article  Google Scholar 

  27. P. Chattopadhyay, A.N. Daw, Solid State Electron. 29, 555 (1986)

    Article  ADS  Google Scholar 

  28. Ş. Altındal, İ. Yücedağ, A. Tataroğlu, Vacuum 84, 363 (2009)

    Article  ADS  Google Scholar 

  29. ShA Mansour, F. Yakuphanoğlu, Solid State Sci. 14, 121 (2012)

    Article  ADS  Google Scholar 

  30. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  31. E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967)

    Article  Google Scholar 

  32. A. Tataroğlu, Ş. Altındal, Nucl. Instrum. Methods. B 252, 257 (2006)

    Article  ADS  Google Scholar 

  33. İ. Yücedağ, Ş. Altındal, A. Tataroğlu, Microelectron. Eng. 84, 180 (2007)

    Article  Google Scholar 

  34. S. Chatterjee, Y. Kuo, J. Lu, Microelectron. Eng. 85, 202 (2008)

    Article  Google Scholar 

  35. R.K. Gupta, M.E. Aydın, F. Yakuphanoğlu, Synth. Met. 161, 2355 (2011)

    Article  Google Scholar 

  36. V.R. Reddy, Thin Solid Films 556, 300–306 (2014)

    Article  ADS  Google Scholar 

  37. R.K. Gupta, F. Yakuphanoğlu, Microelectron. Eng. 105, 13 (2013)

    Article  Google Scholar 

  38. G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Dua, Appl. Phys. Lett. 99, 203105 (2011)

    Article  ADS  Google Scholar 

  39. B. Gündüz, I.S. Yahia, F. Yakuphanoğlu, Microelectron. Eng. 98, 41 (2012)

    Article  Google Scholar 

  40. W.A. Hill, C.C. Coleman, Solid-State Electron. 23, 987 (1980)

    Article  ADS  Google Scholar 

  41. R.K. Gupta, A.A. Al-Ghamdi, O. Al-Hartomi, H. Hasar, F. El-Tantawy, F. Yakuphanoğlu, Synth. Met. 162, 981 (2012)

    Article  Google Scholar 

  42. A. Tataroğlu, Ş. Altındal, Microelectron. Eng. 85, 542 (2008)

    Article  Google Scholar 

  43. Ö. Güllü, S. Aydoğan, A. Türüt, Thin Solid Films 520, 1944 (2012)

    Article  Google Scholar 

  44. F. Parlaktürk, Ş. Altındal, A. Tataroğlu, M. Parlak, A. Agasiev, Microelectron. Eng. 85, 81 (2008)

    Article  Google Scholar 

  45. A. Tataroğlu, Ş. Altındal, Vacuum 82, 1203 (2008)

    Article  ADS  Google Scholar 

  46. M. Mamor, J. Phys.: Condens. Mater. 21, 335802 (2009)

    Google Scholar 

  47. M.E. Aydın, F. Yakuphanoğlu, Microelectron. Reliab. 52, 1350 (2012)

    Article  Google Scholar 

  48. D.S. Reddy, M.B. Reddy, N.N.K. Reddy, V.R. Reddy, J. Modern Phys. 2, 113 (2011)

    Article  ADS  Google Scholar 

  49. H.S. Haddara, M. El-Sayed, Solid State Electron. 31, 1289 (1988)

    Article  ADS  Google Scholar 

  50. R.T. Tung, Mater. Sci. Eng., R 35, 1 (2001)

    Article  Google Scholar 

  51. A. Tataroğlu, Ş. Altındal, Microelectron. Eng. 83, 582 (2006)

    Article  Google Scholar 

  52. C. Sah, Fundamental of Solid-State Electronics (World Scientific Publishing, Singapore, 1991)

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by King Saud University. Authors thank to KSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adem Tataroğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tataroğlu, A., Al-Ghamdi, A.A., El-Tantawy, F. et al. Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique. Appl. Phys. A 122, 220 (2016). https://doi.org/10.1007/s00339-016-9782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9782-7

Keywords

Navigation