Skip to main content
Log in

Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a detailed investigation of the effects of Bi2Sr2Ca1Cu2O8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB2. Moreover, we present MgB2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature (T c ) has slightly dropped from 37.8 K for the pure MgB2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Patel, R. Pałka, B.A. Glowacki, G. Giunchi, A. Figini Albisetti, Y. Shi, D.A. Cardwell, S.C. Hopkins, J. Supercond. Nov. Magn. 26, 923–929 (2013)

    Article  Google Scholar 

  2. J.R. Hull, S. Hanany, T. Matsumura, B. Johnson, T. Jones, Supercond. Sci. Technol. 18, S1–S5 (2005)

    Article  ADS  Google Scholar 

  3. A. Patel, R. Palka, B.A. Glowacki, Supercond. Sci. Technol. 24, 015009 (2011)

    Article  ADS  Google Scholar 

  4. A. Patel, G. Giunchi, F. Albisetti, Y. Shi, S.C. Hopkins, R. Palka, D.A. Cardwell, B.A. Glowacki, Phys. Proced. 36, 937–942 (2012)

    Article  ADS  Google Scholar 

  5. B. Oswald, K.-J. Best, M. Setzer, M. Söll, W. Gawalek, A. Gutt, L. Kovalev, G. Krabbes, L. Fisher, H.C. Freyhardt, Supercond. Sci. Technol. 18, S24–S29 (2005)

    Article  ADS  Google Scholar 

  6. J.R. Hull, Supercond. Sci. Technol. 13, R1–R15 (2000)

    Article  ADS  Google Scholar 

  7. S. Ohashi, S. Tamura, Y. Hirane, IEEE Trans Appl. Supercond. 9, 988–991 (1999)

    Article  Google Scholar 

  8. Y. Fukasawa, H. Ohsaki, IEEE Trans Appl. Supercond. 9, 980–983 (1999)

    Article  Google Scholar 

  9. J. Wang, S. Wang, Y. Zeng, H. Huang, F. Luo, Z. Xu, Q. Tang, G. Lin, C. Zhang, Z. Ren, G. Zhao, D. Zhu, S. Wang, H. Jiang, M. Zhu, C. Deng, P. Hu, C. Li, F. Liu, J. Lian, X. Wang, L. Wang, X. Shen, X. Dong, Physica C 378–381, 809–814 (2002)

    Article  Google Scholar 

  10. Z. Wen, Y. Liu, W. Yang, M. Qiu, J. Phys. D Appl. Phys. 40, 7281–7286 (2007)

    Article  ADS  Google Scholar 

  11. K. Ozturk, S. Akbulut, S. Kutuk, S. Bolat, S. Celik, M. Basoglu, J. Alloy. Compd. 516, 167–171 (2012)

    Article  Google Scholar 

  12. J. Nagamatsu, N. Nakagawa, Y. Zentiani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  13. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  ADS  Google Scholar 

  14. E. Yanmaz, B. Savaskan, M. Basoglu, E. Taylan Koparan, N.R. Dilley, C.R.M. Grovenor, J. Alloy. Compd. 480, 203–207 (2009)

    Article  Google Scholar 

  15. K. Shinohara, T. Futatsumori, H. Ikeda, Physica C 468, 1369–1371 (2008)

    Article  ADS  Google Scholar 

  16. D. Tripathi, T.K. Dey, Physica C 507, 1–9 (2014)

    Article  ADS  Google Scholar 

  17. D. Tripathi, T.K. Dey, J. Alloy. Compd. 607, 264–273 (2014)

    Article  Google Scholar 

  18. Y. Bugoslavsky, G.K. Perkins, X. Qi, L.F. Cohen, A.D. Caplin, Nature 410, 563–565 (2001)

    Article  ADS  Google Scholar 

  19. S.X. Dou, S. Soltanian, W.K. Yeoh, Y. Zhang, IEEE Trans Appl. Supercond. 15, 3219–3222 (2005)

    Article  Google Scholar 

  20. T. Masui, S. Lee, S. Tajima, Phys. Rev. B 70, 024504 (2004)

    Article  ADS  Google Scholar 

  21. K. Tachikawa, Y. Yamada, O. Suzuki, M. Enomoto, M. Aodaie, Physica C 382, 108–112 (2002)

    Article  ADS  Google Scholar 

  22. D. Tripathi, T.K. Dey, J. Alloy. Compd. 618, 56–63 (2015)

    Article  Google Scholar 

  23. T.M. Shen, G. Li, X.T. Zhu, C.H. Cheng, Y. Zhao, Supercond. Sci. Technol. 18, L49–L52 (2005)

    Article  ADS  Google Scholar 

  24. X.F. Rui, X.F. Sun, X.L. Xu, L. Zhang, H. Zhang, Int. J. Mod. Phys. B 19, 375–377 (2005)

    Article  ADS  Google Scholar 

  25. Y.Y. Xu, J. Ren, S.H. Han, H. Zhang, Int. J. Mod. Phys. B 21, 3352–3354 (2007)

    Article  ADS  Google Scholar 

  26. K. Ozturk, S. Celik, A. Cansız, Phys. Status Solidi A 206, 2569–2575 (2009)

    Article  ADS  Google Scholar 

  27. B. Qu, X.D. Sun, J.-G. Li, Z.M. Xiu, C.P. Xue, Supercond. Sci. Technol. 22, 075014 (2009)

    Article  ADS  Google Scholar 

  28. B. Savaskan, E. Taylan Koparan, S. Celik, K. Ozturk, E. Yanmaz, Physica C 502, 63–69 (2014)

    Article  ADS  Google Scholar 

  29. O. Erdem, K. Ozturk, S.B. Guner, S. Celik, E. Yanmaz, J. Low Temp. Phys. 177, 28–39 (2014)

    Article  ADS  Google Scholar 

  30. I. Duz, S.B. Guner, O. Erdem, I. Demir, V. Kapucu, S. Celik, K. Ozturk, S. Hossain, A. Gencer, E. Yanmaz, J. Supercond. Nov. Magn. 27, 2241–2247 (2014)

    Article  Google Scholar 

  31. M. Zeisberger, W. Gawalek, G. Giunchi, J. Appl. Phys. 98, 023905 (2005)

    Article  ADS  Google Scholar 

  32. E. Yanmaz, K. Ozturk, C.E.J. Dancer, M. Basoglu, S. Celik, C.R.M. Grovenor, J. Alloy. Compd. 492, 48–51 (2010)

    Article  Google Scholar 

  33. E. Perini, G. Giunchi, M. Geri, A. Morandi, IEEE Trans Appl. Supercond. 19, 2124–2128 (2009)

    Article  ADS  Google Scholar 

  34. A. Serquis, X.Z. Liao, Y.T. Zhu, J.Y. Coulter, J.Y. Huang, J.O. Willis, D.E. Peterson, F.M. Mueller, N.O. Moreno, J.D. Thompson, V.F. Nesterenko, S.S. Indrakanti, J. Appl. Phys. 92, 351–356 (2002)

    Article  ADS  Google Scholar 

  35. S.K. Chen, M. Wei, J.L. MacManus-Driscoll, Appl. Phys. Lett. 88, 192512 (2006)

    Article  ADS  Google Scholar 

  36. S. Celik, J. Alloy. Compd. (2015). doi:10.1016/j.jallcom.2015.11.230

    Google Scholar 

  37. M. Murakami, T. Oyama, H. Fujimoto, S. Gotoh, K. Yamaguchi, Y. Shiohara, N. Koshizuoka, S. Tanaka, IEEE Trans Magn. 27, 1479–1486 (1991)

    Article  ADS  Google Scholar 

  38. S. Sergeenkov, E.S. Sanchez, R.V.F. Salla, V.A.G. Rivera, L. Cichetto Jr, F.M. Araujo-Moreira, J. Appl. Phys. 112, 033908 (2012)

    Article  ADS  Google Scholar 

  39. Y. Yang, X. Zheng, Supercond. Sci. Technol. 21, 015021 (2008)

    Article  ADS  Google Scholar 

  40. J.R. Hull, A. Cansız, J. Appl. Phys. 86, 6396–6404 (1999)

    Article  ADS  Google Scholar 

  41. K.S.B. De Silva, X. Xu, W.X. Li, Y. Zhang, M. Rindfleisch, M. Tomsic, IEEE Trans Appl. Supercond. 21(3), 2686–2689 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

All the authors would like to thank Prof. Dr. Ekrem Yanmaz (at İstanbul Gelişim University, Turkey) for the sample preparation method developed by him and Prof. Dr. Ali Gencer (at Ankara University, Ankara, Turkey) for his support and encouragement and Sahure Geçer (at Ankara University, Ankara, Turkey) for the technical assistance. This work was supported by the Scientific Research Coordination Unit of Bulent Ecevit University of Turkey, with Project No. 2013-76962555-03. Magnetic levitation force measurements at low temperatures were taken at Solid State Research Laboratory in Recep Tayyip Erdogan University by using the system which was designed by the project supported by the Scientific and Technological Research Council of Turkey (TUBITAK), with contract number 110T622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Taylan Koparan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylan Koparan, E., Savaskan, B., Guner, S.B. et al. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors. Appl. Phys. A 122, 46 (2016). https://doi.org/10.1007/s00339-016-9610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9610-0

Keywords

Navigation