Skip to main content
Log in

Magnesium-doped zinc oxide nanorod–nanotube semiconductor/p-silicon heterojunction diodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)–nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Zhang, Y. Lv, J. Yan, D. Hui, J. Yun, C. Zhai, W. Zhao, J. Alloys Compd. 650, 374 (2015)

    Article  Google Scholar 

  2. C.-H. Kwak, H.-S. Woo, F. Abdel-Hady, A.A. Wazzan, J.-H. Lee, Sens. Actuators B Chem. 223, 527 (2016)

    Article  Google Scholar 

  3. B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani, J. Alloys Compd. 658, 435 (2016)

    Article  Google Scholar 

  4. X. Qu, S. Lü, J. Wang, Z. Li, H. Xue, Mater. Sci. Semicond. Process. 15, 244 (2012)

    Article  Google Scholar 

  5. B. Huang, C. Zhao, M. Zhang, Z. Zhang, E. Xie, J. Zhou, W. Han, Appl. Surf. Sci. 349, 615 (2015)

    Article  Google Scholar 

  6. X. Dong, P. Yang, Y. Liu, C. Jia, D. Wang, J. Wang, L. Chen, Q. Che, Ceram. Int. 42, 518 (2016)

    Article  Google Scholar 

  7. L. Song, P. Du, J. Xiong, F. Ko, C. Cui, Electrochim. Acta 163, 330 (2015)

    Article  Google Scholar 

  8. C. Li, G. Shi, J. Photochem. Photobiol. C Photochem. Rev. 19, 20 (2014)

    Article  Google Scholar 

  9. H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, Thin Solid Films 516, 5664 (2008)

    Article  ADS  Google Scholar 

  10. C. Tian, X. Chen, J. Liu, D. Zhang, C. Wei, Y. Zhao, X. Zhang, Appl. Surf. Sci. 314, 786 (2014)

    Article  ADS  Google Scholar 

  11. Y. Liu, T. Hang, Y. Xie, Z. Bao, J. Song, H. Zhang, E. Xie, Sens. Actuators B Chem. 160, 266 (2011)

    Article  Google Scholar 

  12. C.-Y. Tsay, H.-C. Cheng, M.-C. Wang, P.-Y. Lee, C.-F. Chen, C.-K. Lin, Surf. Coat. Technol. 202, 1323 (2007)

    Article  Google Scholar 

  13. S.-H. Jeong, J.-H. Park, B.-T. Lee, J. Alloys Compd. 617, 180 (2014)

    Article  Google Scholar 

  14. J.J. Park, J.K. Song, J.S. Ha, S.M. Park, Appl. Surf. Sci. 258, 8542 (2012)

    Article  ADS  Google Scholar 

  15. H. Benzarouk, A. Drici, M. Mekhnache, A. Amara, M. Guerioune, J.C. Bernède, H. Bendjffal, Superlattices Microstruct. 52, 594 (2012)

    Article  ADS  Google Scholar 

  16. S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, J. Alloys Compd. 512, 171 (2012)

    Article  Google Scholar 

  17. D. Fang, P. Yao, H. Li, Ceram. Int. 40, 5873 (2014)

    Article  Google Scholar 

  18. G. Vijayaprasath, G. Ravi, M.R. Manikandan, M. Arivananhan, M. Navaneethan, Y. Hayakawa, Asian J. Chem. 25, S258 (2013)

    Google Scholar 

  19. R. Chandramohan, J. Thirumalai, T.A. Vijayan, S. Valanarasu, S.E. Vizhian, M. Srikanth, V. Swaminathan, Adv. Sci. Lett. 3, 319 (2010)

    Article  Google Scholar 

  20. J. Tang, J. Chai, J. Huang, L. Deng, X.S. Nguyen, L. Sun, T. Venkatesan, Z. Shen, C.B. Tay, S.J. Chua, A.C.S. Appl, Mater. Interfaces 7, 4737 (2015)

    Article  Google Scholar 

  21. I. Polat, S. Yılmaz, E. Bacaksız, Y. Atasoy, M. Tomakin, J. Mater. Sci:Mater. Electron. 25, 3173 (2014)

    Google Scholar 

  22. L. Roza, K.A.J. Fairuzy, P. Dewanta, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, J. Mater. Sci.: Mater. Electron. 26, 7955 (2015)

    Google Scholar 

  23. Z. Wang, M. Wang, Z. Lin, Y. Xue, G. Huang, X. Yao, Appl. Surf. Sci. 255, 4705 (2009)

    Article  ADS  Google Scholar 

  24. S. Singh, G.R. Dillip, S. Vyas, M. Roqibul Hasan, I.-K. Park, P. Chakrabarti, S.-H. Park, Microsyst. Technol. (2015). doi:10.1007/s00542-015-2724-z

    Google Scholar 

  25. W.-C. Huang, T.-C. Lin, T.-L. Hsien, M.-H. Tsai, C.-T. Horng, T.-L. Kuo, Microelectron. Eng. 107, 205 (2013)

    Article  Google Scholar 

  26. M. Soylu, O. Savas, Mater. Sci. Semicond. Process. 29, 76 (2015)

    Article  Google Scholar 

  27. T. Tsuboi, K. Yamamoto, A. Nakamura, J. Temmyo, Jpn. J. Appl. Phys. 49, 04DG13 (2010)

    Article  Google Scholar 

  28. S. Ilican, F. Yakuphanoglu, M. Caglar, Y. Caglar, J. Alloys Compd. 509, 5290 (2011)

    Article  Google Scholar 

  29. C.S. Barret, T.B. Massalski, Structure of Metals, 3rd edn. (Pergamon Press, Oxford, 1980)

    Google Scholar 

  30. P. Kubelka, F. Munk, Z. Tech. Physik. 12, 593 (1931)

    Google Scholar 

  31. H. Peng, P.F. Ndione, D.S. Ginley, A. Zakutayev, S. Lany, Phys. Rev. X 5, 1 (2015)

    Google Scholar 

  32. A.A. Ahmad, A.M. Alsaad, B.A. Albiss, M.-A. Al-Akhras, H.M. El-Nasser, I.A. Qattan, Thin Solid Films 606, 133 (2016)

    Article  ADS  Google Scholar 

  33. C. Mao, L. Fang, H. Zhang, W. Li, F. Wu, G. Qin, H. Ruan, C. Kong, J. Alloys Compd. 676, 135 (2016)

    Article  Google Scholar 

  34. K. Joshi, M. Rawat, S.K. Gautam, R.G. Singh, R.C. Ramola, F. Singh, J. Alloys Compd. 680, 252 (2016)

    Article  Google Scholar 

  35. S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub, A.D. Omrani, Ceram. Int. 42, 10259 (2016)

    Article  Google Scholar 

  36. S. Klubnuan, P. Amornpitoksuk, S. Suwanboon, Mater. Sci. Semicond. Process. 39, 515 (2015)

    Article  Google Scholar 

  37. S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, Ceram. Int. 37, 1359 (2011)

    Article  Google Scholar 

  38. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 2002)

    Google Scholar 

  39. S. Sharma, C. Periasamy, Superlattices Microstruct. 73, 12 (2014)

    Article  ADS  Google Scholar 

  40. F.Z. Bedia, A. Bedia, B. Benyoucef, S. Hamzaoui, Phys. Proc. 55, 61 (2014)

    Article  ADS  Google Scholar 

  41. P. Klason, M.M. Rahman, Q.H. Hu, O. Nur, R. Turan, M. Willander, Microelectron. J. 40, 706 (2009)

    Article  Google Scholar 

  42. N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M.S. Aida, Mater. Sci. Semicond. Process. 14, 229 (2011)

    Article  Google Scholar 

  43. S. Aydoğan, K. Çınar, H. Asıl, C. Coşkun, A. Türüt, J. Alloys Compd. 476, 913 (2009)

    Article  Google Scholar 

  44. G.B. Sakr, S.S. Fouad, I.S. Yahia, D.M.A. Basset, F. Yakuphanoglu, Mater. Res. Bull. 48, 752 (2013)

    Article  Google Scholar 

  45. M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, NY, 1970)

    Google Scholar 

  46. S. Aksoy, Y. Caglar, J. Alloys Compd. 613, 330 (2014)

    Article  Google Scholar 

  47. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  48. R.K. Gupta, K. Ghosh, P.K. Kahol, Physica. E. 41, 617 (2009)

    Article  ADS  Google Scholar 

  49. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  50. R.K. Gupta, F. Yakuphanoglu, K. Ghosh, P.K. Kahol, Microelectron. Eng. 88, 3067 (2001)

    Article  Google Scholar 

  51. A. Van der Ziel, Solid State Physical Electronics, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1968)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Anadolu University Commission of Scientific Research Projects under Grant Nos. 1402F055 and 1305F082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujdat Caglar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caglar, Y., Görgün, K., Ilican, S. et al. Magnesium-doped zinc oxide nanorod–nanotube semiconductor/p-silicon heterojunction diodes. Appl. Phys. A 122, 733 (2016). https://doi.org/10.1007/s00339-016-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0251-0

Keywords

Navigation