Skip to main content
Log in

Sedimentary rock porosity studied by electromagnetic techniques: nuclear magnetic resonance and dielectric permittivity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work involves a comprehensive experimental study of porosity and pore size distribution of sedimentary rocks, from oil fields formations, by means of two electromagnetic techniques, namely proton (1H) nuclear magnetic resonance (NMR) and dielectric complex constant (DCC) as function of the frequency, both providing complementary results. The NMR yields an accurate determination of the relative pore size distribution and both movable and irreducible fluids. The DCC measurement provides the direct current electrical resistivity of the samples with different degrees of hydration. Thus, combining the results of both techniques allows the determination of the tortuosity index, by means of Archie’s relation, and from it the average pore channel length. These measurements are performed on fully hydrated (saturated), centrifuged, dried, and cleaned rocks and also on samples with the irreducible fluids. Finally, the results are complemented with capillary pressure measurements to obtain the total volume associated with the pore channels related to the rock permeability. Additionally, the work presents a particular method to use a network analyzer to measure the DCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, New York, 1961)

    Google Scholar 

  2. M. Mehring, Principles of High Resolution NMR in Solids (Springer, Berlin, 1983)

    Book  Google Scholar 

  3. M.A. Chesta, M.E. Ramia, S. Jeandrevin, C.A. Martín, Appl. Phys. A 97, 301–307 (2009)

    Article  ADS  Google Scholar 

  4. R.G. Coates, L. Xiao, M.G. Prammer, NMR Logging, Principles and Applications (Halliburton Energy Services, Houston, 1999)

    Google Scholar 

  5. C.A. Martín, M.E. Ramia, L. Barberis. J. Soc. Pet. Eng. SPE-107781-PP (2007)

  6. R.L. Kleinberg, W.E. Kenyon, P.P. Mitra, J. Magn. Reson. A 108(2), 206 (1994)

    Article  ADS  Google Scholar 

  7. C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1990)

    Book  Google Scholar 

  8. A.M. Niell, C.A. Martín, M.E. Ramia, Ann. Magn. Reson. 7, 1–44 (2008)

    Google Scholar 

  9. N. Bona, E. Rossi, S. Capaccioli, Soc. Pet. Eng. 69741, 80 (2000)

    Google Scholar 

  10. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941)

    Article  ADS  Google Scholar 

  11. M.E. Ramia, C.A. Martín y M.A. Chesta, Trabajos de Física, UNC—FAMAF, No 14, www.famaf.unc.edu.ar, (2012)

  12. C.A. Martín, G.A. Monti, J. Comput. Phys. 75, 244 (1998)

    Article  ADS  Google Scholar 

  13. L.A. Spaletti, I. Queralt, S.D. Matheos, F. Colombo, J. Maggi, J. South Am. Earth Sci. 25(4), 440 (2008)

    Article  ADS  Google Scholar 

  14. T. Djebar, E.C. Donaldson, Petrophysics (Elsevier, Amsterdam, 2004)

    Google Scholar 

  15. P.C. Lysne, Geophysics 48, 775 (1983)

    Article  ADS  Google Scholar 

  16. N. Bona, E. Rossi, S. Capaccioli, Proc. Soc. Core Anal. 9925, 1 (1999)

Download references

Acknowledgments

We thank to Dr. R. Astini from the Geology Department of the Facultad de Ciencias Exactas Físicas y Naturales for his help in sample preparation. This research has been supported Secyt-Universidad Nacional de Córdoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Ramia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramia, M.E., Martín, C.A. Sedimentary rock porosity studied by electromagnetic techniques: nuclear magnetic resonance and dielectric permittivity. Appl. Phys. A 118, 769–777 (2015). https://doi.org/10.1007/s00339-014-8798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8798-0

Keywords

Navigation