Skip to main content
Log in

A photodiode with high rectification ratio based on well-aligned ZnO nanowire arrays and regioregular poly(3-hexylthiophene-2,5-diyl) hybrid heterojunction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A photodiode was fabricated based on well-aligned ZnO nanowire arrays (ZNAs) and regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) hybrid heterojunction. The current–voltage (I–V) characteristics of ITO/ZNAs/P3HT/Ag device in the dark and under illumination with a solar simulator were investigated in detail. The results demonstrated that the device showed good diode characteristics in the dark and under illumination. The device exhibited a high rectification ratio (RR) of 3211 at 2 V and a low turn-on voltage of 0.5 V in the dark. Also, the RR of the device as a function of illumination intensity was observed, and the transportation process of charge carriers in the diode under illumination was illuminated in terms of energy band diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Victoria, A. Arenas, C. Molina, J. Chem. Educ. 81, 1333 (2004)

    Article  Google Scholar 

  2. S.F. Tedde, J. Kern, T. Sterzl, J. Fürst, P. Lugli, O. Hayden, Nano Lett. 9, 980 (2009)

    Article  ADS  Google Scholar 

  3. J.P. Clifford, G. Konstantatos, K.W. Johnston, S. Hoogland, L. Levina, E.H. Sargent, Nat. Nanotechnol. 4, 40 (2009)

    Article  ADS  Google Scholar 

  4. L.D. Wang, D.X. Zhao, Z.S. Su, F. Fang, B.H. Li, Z.Z. Zhang, D.Z. Shen, X.H. Wang, Org. Electron. 11, 1318 (2010)

    Article  Google Scholar 

  5. J. Xue, B.P. Rand, S. Uchida, S.R. Forrest, Adv. Mater. 17, 66 (2005)

    Article  Google Scholar 

  6. B. Pradhan, A.K. Sharma, A.K. Ray, J. Phys. D, Appl. Phys. 42, 165308 (2009)

    Article  ADS  Google Scholar 

  7. C.J. Novotny, E.T. Yu, P.K.L. Yu, Nano Lett. 8, 775 (2008)

    Article  ADS  Google Scholar 

  8. J. Hu, M. Ouyang, P.D. Yang, C.M. Lieber, Nature 399, 48 (1999)

    Article  ADS  Google Scholar 

  9. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  10. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Nano Lett. 4, 1919 (2004)

    Article  ADS  Google Scholar 

  11. M. Schierhorn, S.W. Boettcher, S. Kraemer, G.D. Stucky, M. Moskovits, Nano Lett. 9, 3262 (2009)

    Article  ADS  Google Scholar 

  12. Y. Zhang, A. Kolmakov, Y. Lilach, M. Moskovits, J. Phys. Chem. B 109, 1923 (2005)

    Article  Google Scholar 

  13. M. Kumar, J.P. Kar, I.-S. Kim, S.-Y. Choi, J.-M. Myoung, Appl. Phys. A 97, 689 (2009)

    Article  ADS  Google Scholar 

  14. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  15. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003)

    Article  Google Scholar 

  16. L.K. van Vugt, S. Rühle, P. Ravindran, H.C. Gerritsen, L. Kuipers, D. Vanmaekelbergh, Phys. Rev. Lett. 97, 147401 (2006)

    Article  ADS  Google Scholar 

  17. Y. Xi, J.H. Song, S. Xu, R.S. Yang, Z.Y. Gao, C.G. Hu, Z.L. Wang, J. Mater. Chem. 19, 9260 (2009)

    Article  Google Scholar 

  18. R. Konenkamp, R.C. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)

    Article  ADS  Google Scholar 

  19. W.I. Park, G.C. Yi, Adv. Mater. 16, 87 (2004)

    Article  Google Scholar 

  20. S.-B. Park, B.-G. Kim, J.-Y. Kim, T.-H. Jung, D.-G. Lim, J.-H. Park, J.-G. Park, Appl. Phys. A 102, 169 (2011)

    Article  ADS  Google Scholar 

  21. D.C. Olson, Y.J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J.A. Voigt, J.W.P. Hsu, J. Phys. Chem. C 111, 16640 (2007)

    Article  Google Scholar 

  22. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Lett. 7, 1793 (2007)

    Article  ADS  Google Scholar 

  23. K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima, K. Hashimoto, J. Phys. Chem. C 111, 7218 (2007)

    Article  Google Scholar 

  24. P. Ravirajan, A.M. Peir, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110, 7635 (2006)

    Article  Google Scholar 

  25. Y.F. Hsu, Y.Y. Xi, A.B. Djurišić, W.K. Chan, Appl. Phys. Lett. 92, 133507 (2008)

    Article  ADS  Google Scholar 

  26. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater. 4, 455 (2005)

    Article  ADS  Google Scholar 

  27. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)

    Article  ADS  Google Scholar 

  28. X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Science 316, 102 (2007)

    Article  ADS  Google Scholar 

  29. Y. Qin, X.D. Wang, Z.L. Wang, Nature 451, 809 (2008)

    Article  ADS  Google Scholar 

  30. S.L. Zhao, P.Z. Kan, Z. Xu, C. Kong, D.W. Wang, Y. Yan, Y.S. Wang, Org. Electron. 11, 789 (2010)

    Article  Google Scholar 

  31. D.W. Wang, S.L. Zhao, Z. Xu, C. Kong, W. Gong, Org. Electron. 12, 92 (2011)

    Article  Google Scholar 

  32. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P.D. Yang, Nano Lett. 5, 1231 (2005)

    Article  ADS  Google Scholar 

  33. N.N. Wang, J.S. Yu, Y. Zang, J. Huang, Y.D. Jiang, Sol. Energy Mater. Sol. Cells 94, 263 (2010)

    Article  Google Scholar 

  34. J.S. Yu, N.N. Wang, Y. Zang, Y.D. Jiang, Sol. Energy Mater. Sol. Cells 95, 664 (2011)

    Article  Google Scholar 

  35. J. Huang, J.S. Yu, Z.Q. Guan, Y.D. Jiang, Appl. Phys. Lett. 97, 143301 (2010)

    Article  ADS  Google Scholar 

  36. C.J. Park, D.K. Choi, J. Yoo, G.C. Yi, C.J. Lee, Appl. Phys. Lett. 90, 083107 (2007)

    Article  ADS  Google Scholar 

  37. Z. Guo, D.X. Zhao, Y.C. Liu, D.Z. Shen, J.Y. Zhang, B.H. Li, Appl. Phys. Lett. 93, 163501 (2008)

    Article  ADS  Google Scholar 

  38. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  39. J.G. Lu, Z.Z. Ye, G.D. Yuan, Y.J. Zeng, F. Zhuge, L.P. Zhu, B.H. Zhao, S.B. Zhang, Appl. Phys. Lett. 89, 053501 (2006)

    Article  ADS  Google Scholar 

  40. S. Karan, B. Mallik, Nanotechnology 19, 495202 (2008)

    Article  Google Scholar 

  41. M. Dutta, D. Basak, Appl. Phys. Lett. 92, 212112 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation of China (NSFC) (Grant No. 60736005 and 60425101-1), the Foundation for Innovative Research Groups of the NSFC (Grant No. 60721001), Provincial project (Grant No. 9140A02060609DZ0208), SRF for ROCS, SEM (Grant No.GGRYJJ08-05), and Young Excellent Project of Sichuan Province (Grant No. 09ZQ026-074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., Yu, J., Ma, W. et al. A photodiode with high rectification ratio based on well-aligned ZnO nanowire arrays and regioregular poly(3-hexylthiophene-2,5-diyl) hybrid heterojunction. Appl. Phys. A 106, 511–515 (2012). https://doi.org/10.1007/s00339-011-6756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6756-7

Keywords

Navigation