Skip to main content
Log in

Nanoindentation and the micromechanics of Van Gogh oil paints

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Understanding the mechanical properties of ancient paintings is a major issue for conservation and restoration. One strategy is to measure the mechanical properties of reconstructed paints: however, the aging process is poorly known, so it is also desirable to measure mechanical properties directly on ancient paint samples. Using nanoindentation, we have characterized submillimetric samples recovered from restoration of two Van Gogh paintings and compared the results with reconstructed paint samples. We demonstrate that the reduced modulus and hardness of historical paints can be measured at a very local scale, even differentiating between each paint layer. Our reconstructed paint samples exhibit elastic moduli comparable to values of the literature, but the values measured on the two 19th century paint samples are found to be significantly larger. Similarly, the compositional dependence of the elastic modulus is consistent with literature results for our reconstructed samples while our preliminary results for ancient samples do not readily fall into the same pattern. These results all point out to a significant impact of long term aging, in a manner which is difficult to predict in our present state of understanding. They demonstrate that nanoindentation is a very adequate tool to improve our knowledge of art paint mechanics and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Keck, Stud. Conserv. 14, 9 (1969)

    Article  Google Scholar 

  2. L. Pauchard, V. Lazarus, B. Abou, K. Sekimoto, G. Aitken, C. Lahanier, Reflets Phys. 3, 5 (2007)

    Article  Google Scholar 

  3. G. Hedley, Stud. Conserv. 33, 133 (1988)

    Article  Google Scholar 

  4. A.A. Karpowicz, J. Am. Inst. Conserv. 29(2), 169 (1990)

    Article  Google Scholar 

  5. M. Mecklenburg, C. Tumosa, D. Erhardt, Mater. Issues Art Archaeol. VII 852, 13 (2005)

    Google Scholar 

  6. M.F. Mecklenburg, L. Fuster Lopez, in Proceedings of the Third International Conference Colour and Conservation, Milan, November 2006 (2006). Available on http://si-pddr.si.edu/jspui/bitstream/10088/11181/1/mci_CESMAR7p49-58.pdf

    Google Scholar 

  7. M.F. Mecklenburg, in Museum Microclimates, ed. by T. Padfield, K. Borchersen (Copenhagen, 2007), pp. 19–25. Available on http://www.conservationphysics.org/mm/mecklenburg/mecklenburg.pdf

  8. P.M. Whitmore, V.G. Colaluca, Stud. Conserv. 40, 51 (1995)

    Article  Google Scholar 

  9. D. Erhardt, C.S. Tumosa, M.F. Mecklenburg, Stud. Conserv. 50(2), 143 (2005)

    Google Scholar 

  10. C.R.T. Young, in Modern Paints Uncovered, May 2006. Postprints Tate/Getty/NGA Symposium, 2006, pp. 247–256. Available on http://www.courtauld.ac.uk/people/young-christina/PDF%205%20MPU.pdf

  11. O. Fuesers, S. Zumbühl, in 9th International Conference on NDT of Art, May 2008 (Jerusalem, 2008). Available on http://www.ndt.net/article/art2008/papers/219Fuesers.pdf

  12. G. Hedley, M. Odlyha, A. Burnstock, J. Tillinghast, C. Husband, J. Therm. Anal. 37, 2067 (1991)

    Article  Google Scholar 

  13. M. Odlyha, T.Y.A. Chan, O. Pages, Thermochim. Acta 263, 7 (1995)

    Article  Google Scholar 

  14. J. Boon, E. Oberthaler, in Vermeer, Die Malkunst – Spurensicherung an einem Meisterwerk: Ausstellungskatalog des Kunsthistorischen Museums Wien 2010, ed. by S. Haag, E. Oberthaler, S. Pénot (Residenz Verl., Wien, 2010), pp. 328–335

    Google Scholar 

  15. M.F. Mecklenburg, Some aspects of the mechanical behavior of fabric supported paintings. Report submitted to the Smithsonian Institution, Washington, D.C. (1982)

  16. C.R.T. Young, Opt. Lasers Eng. 31(2), 163 (1999). Special Edition

    Article  Google Scholar 

  17. J.W. Hutchinson, Z. Suo, Adv. Appl. Mech. 29, 63 (1992)

    Article  MATH  Google Scholar 

  18. A.C. Fischer-Cripps, Nanoindentation (Springer, New York, 2004)

    Google Scholar 

  19. P. Bertrand-Lambotte, J.L. Loubet, C. Verpy, S. Pavan, Thin Solid Films 398–399, 306 (2001)

    Article  Google Scholar 

  20. S.V. Hainsworth, P.J. Kilgallon, Prog. Org. Coat. 62, 21 (2008)

    Article  Google Scholar 

  21. L. Lin, G.S. Blackman, R.R. Matheson, Prog. Org. Coat. 40, 85 (2000)

    Article  Google Scholar 

  22. L. Lin, G.S. Blackman, R.R. Matheson, Mater. Sci. Eng. A 317, 163 (2001)

    Article  Google Scholar 

  23. N. Chemin, L. Rozes, C. Chanéac, S. Cassaignon, E. Le Bourhis, J.-P. Jolivet, O. Spalla, E. Barthel, C. Sanchez, Chem. Mater. 20, 4602 (2008)

    Article  Google Scholar 

  24. S. Wacharawichanant, S. Thongyai, A. Phutthaphan, Polym. Test. 27, 971 (2008)

    Article  Google Scholar 

  25. W.C. Oliver, G.M. Pharr, Int. J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  26. J.L. Loubet, M. Bauer, A. Tonck, S. Bec, B. Gauthier-Manuel, NATO Adv. Study Inst. Ser. E 233, 429 (1993)

    Google Scholar 

  27. H. Wexler, Chem. Rev. 64(6), 591 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Salvant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvant, J., Barthel, E. & Menu, M. Nanoindentation and the micromechanics of Van Gogh oil paints. Appl. Phys. A 104, 509–515 (2011). https://doi.org/10.1007/s00339-011-6486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6486-x

Keywords

Navigation