Skip to main content

Advertisement

Log in

Model properties relevant to laser ablation of moderately absorbing polymers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A set of polymers including biopolymers and polymers from renewable resources are studied, with attention paid to their capability to form a foamy surface layer by laser irradiation. A model of laser-induced pressure wave is discussed, with its tensile tail giving rise to a fast and dense nucleation of cavities that can expand to microbubbles when filled with ablation gas. The intensity of the pressure wave has a maximum for an absorption coefficient of ∼1000 cm−1. Polyvinyl acetate, studied as a prototype polymer experimentally and by modeling, allows discussing the role of the viscosity drop in the dynamics of the laser-induced cavitations. In the Zeldovich frequency factor, a T (temperature) and P (pressure) dependent model of viscosity, and a T-dependent model of surface tension are introduced. It is further suggested that the well-known free-volume nanoholes existing in the material before the irradiation can constitute the nuclei of importance and that their concentration is one of the factors controlling the pre-exponential factor in the nucleation rate law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α :

absorption coefficient

l a =α−1:

laser absorption depth

c s :

speed of sound in the polymer

C p :

heat capacity of the polymer

ρ :

density of the polymer

F(t):

instantaneous fluence

g(t):

normalized time profile of laser pulse

τ :

pulse width

τ 0 :

pulse width parameter in g(t)

F 0 :

total fluence for a ns pulse

f 0 :

fluence of a “Dirac” or fs laser pulse

αcsτ<1:

pressure confinement condition

t :

time

z :

depth

J(t,z):

nucleation rate

σ :

surface tension of the material

Z :

Zeldovich frequency factor

n 0 :

molecular density factor

v :

volume of a free volume hole in PVAc

J0=Zn0:

pre-exponential factor

P i :

pressure inside

P o :

pressure outside the nucleating bubbles

P v :

vapor pressure inside bubbles

T(z,t):

temperature at depth z and time t

T c :

critical temperature of the polymer

T 0 :

ambient temperature

T max  :

maximum surface temperature

A 0 :

target absorptivity

Γ :

Grüneisen constant

Rs=−1:

surface reflection coefficient of sound

po(z,t):

pressure for a fs pulse (ultrashort)

Po(z,t):

pressure for a ns pulse (long)

p1(z,t),p2(z,t) and p3(z,t):

pressure of the 3 superimposed subwaves

δ T ,δ P ,T R ,P R :

parameters of the Avramov model

References

  1. R.M. White, J. Appl. Phys. 34, 3559 (1963)

    Article  ADS  Google Scholar 

  2. E.F. Carome, N.A. Clark, C.E. Moeller, Appl. Phys. Lett. 4, 95 (1964)

    Article  ADS  Google Scholar 

  3. J.C. Bushnell, D.J. McCloskey, J. Appl. Phys. 39, 5541 (1968)

    Article  ADS  Google Scholar 

  4. M. Terzic, M.W. Sigrist, J. Appl. Phys. 56, 93 (1984)

    Article  ADS  Google Scholar 

  5. M.W. Sigrist, J. Appl. Phys. 60, R83 (1986)

    Article  ADS  Google Scholar 

  6. A.C. Tam, Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  7. V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (AIP, New York, 1993)

    Google Scholar 

  8. S. Lazare, R. Bonneau, S. Gaspard, M. Castillejo, A. Sionkowska, Appl. Phys. A 94, 719 (2009)

    Article  ADS  Google Scholar 

  9. B. Steverding, J. Phys. D, Appl. Phys. 4, 787 (1971)

    Article  ADS  Google Scholar 

  10. F.W. Cross, R.K. Al-Dahir, P.E. Dyer, A.J. MacRobert, Appl. Phys. Lett. 50, 1019 (1987)

    Article  ADS  Google Scholar 

  11. R.S. Dingus, R.J. Scammon, Proc. SPIE 1427, 45 (1991)

    Article  ADS  Google Scholar 

  12. G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487 (2003)

    Article  Google Scholar 

  13. G. Paltauf, H. Schmidt-Kloiber, Appl. Phys. A 62, 303 (1996)

    Article  ADS  Google Scholar 

  14. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  15. F. Vidal, T.W. Johnson, J.-C. Kiefer, F. Martin, Phys. Rev. B 70, 184125 (2004)

    Article  ADS  Google Scholar 

  16. N. Inogamov, V. Zhakhovskii, S.I. Ashitkov, Yu.V. Petrov, M.B. Agranat, S.I. Anisimov, K. Nishihara, V. Fortov, J. Exp. Theor. Phys. 107, 1 (2008)

    Article  ADS  Google Scholar 

  17. F.W. Cross, R.K. Al-Dhahir, P.E. Dyer, J. Appl. Phys. 64, 2194 (1988)

    Article  ADS  Google Scholar 

  18. I. Itzkan, D. Albagli, M.L. Perelman, C. Von Rosenberg, M.S. Feld, Proc. Natl. Aad. Sci. USA 92, 1960 (1995)

    Article  ADS  Google Scholar 

  19. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  20. A.A. Oraevsky, S.L. Jacques, F.K. Tittel, J. Appl. Phys. 78, 1281 (1995)

    Article  ADS  Google Scholar 

  21. D. Kim, M. Ye, C.P. Grigoropoulos, Appl. Phys. A 67, 169 (1998)

    Article  ADS  Google Scholar 

  22. W.O. Wray, T. Aida, R.B. Dyer, Appl. Phys. B 74, 57 (2002)

    Article  ADS  Google Scholar 

  23. J. Hobley, Y. Kuge, S. Gorelik, M. Kasuya, K. Hatanaka, S. Kajimoto, H. Fukumura, Phys. Chem. Chem. Phys. 10, 5256 (2008)

    Article  Google Scholar 

  24. S. Lazare, V. Tokarev, A. Sionkowska, M. Wisniewski, Appl. Phys. A 81, 465 (2005)

    Article  ADS  Google Scholar 

  25. A. Sionkowska, H. Kaczmarek, M. Wisniewski, J. Skopinska, S. Lazare, V. Tokarev, Surf. Sci. 600, 3775 (2006)

    Article  ADS  Google Scholar 

  26. S. Lazare, V. Tokarev, A. Sionkowska, M. Wisniewski, J. Phys. Conf. Ser. 59, 546 (2007)

    ADS  Google Scholar 

  27. M. Wisniewski, A. Sionkowska, H. Kaczmarek, J. Skopinska, S. Lazare, V. Tokarev, Int. J. Photoenergy 2006, 1–7 (2006)

    Article  Google Scholar 

  28. M. Wisniewski, A. Sionkowska, H. Kaczmarek, J. Skopinska, P. Chevallier, D. Mantovani, S. Lazare, V. Tokarev, Appl. Surf. Sci. 253, 1970 (2006)

    Article  ADS  Google Scholar 

  29. M. Wisniewski, A. Sionkowska, H. Kaczmarek, S. Lazare, V. Tokarev, Polymery 52, 259 (2007) and 52, 571 (2007)

    Google Scholar 

  30. A. Sionkowska, M. Wisniewski, S. Lazare, J. Lopez, M.-C. Hernandez, F. Guillemot, M.-C. Durrieu, Mol. Cryst. Liq. Cryst. 486, 250 (2007)

    Article  Google Scholar 

  31. S. Gaspard, M. Oujja, R. DeNalda, C. Abrusci, F. Catalina, L. Banares, S. Lazare, M. Castillejo, Appl. Surf. Sci. 254, 1179 (2007)

    Article  ADS  Google Scholar 

  32. S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, M. Castillejo, Phys. Chem. Chem. Phys. 10, 6174 (2008)

    Article  Google Scholar 

  33. M. Wisniewski, A. Sionkowska, H. Kaczmarek, S. Lazare, V. Tokarev, C. Belin, J. Photochem. Photobiol. 188, 192 (2007)

    Article  Google Scholar 

  34. S. Gaspard, M. Oujja, C. Abrusci, F. Catalina, S. Lazare, J.P. Desvergne, M. Castillejo, Photochem. Photobiol. 193, 187 (2008)

    Article  Google Scholar 

  35. E. Rebollar, G. Bounos, A. Selimis, M. Castillejo, S. Georgiou, Appl. Phys. A 92, 1043 (2008)

    Article  ADS  Google Scholar 

  36. T. Efthimiopoulos, C. Kiagias, G. Heliotis, E. Helidonis, Can. J. Phys. 78, 509 (2000)

    Article  ADS  Google Scholar 

  37. F. Weisbuch, V. Tokarev, S. Lazare, C. Belin, J.-L. Bruneel, Appl. Phys. A 75, 677 (2002)

    Article  ADS  Google Scholar 

  38. V. Tokarev, S. Lazare, C. Belin, D. Débarre, Appl. Phys. A 79, 717 (2004)

    Article  ADS  Google Scholar 

  39. E. Rebollar, G. Bounos, M. Oujja, C. Domingo, S. Georgiou, M. Castillejo, Appl. Surf. Sci. 248, 254 (2005)

    Article  ADS  Google Scholar 

  40. S. Gaspard, M. Oujja, R. de Nalda, M. Castillejo, L. Bañares, S. Lazare, R. Bonneau, Appl. Phys. A 93, 209 (2008)

    Article  ADS  Google Scholar 

  41. S. Lazare, R. Bonneau, S. Gaspard, M. Castillejo, A. Sionkowska, J. Laser Micro/Nanoeng. 41(3) (2009). www.jlps.gr.jp/jlmn/index.php

  42. E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945)

    Article  ADS  Google Scholar 

  43. G. Carri, R. Simha, J. Colloid Interface Sci. 178, 483 (1996)

    Article  Google Scholar 

  44. R. Jain, R. Simha, J. Colloid Interface Sci. 216, 424 (1999)

    Article  Google Scholar 

  45. S. Wu, in Polymer Interface and Adhesion (Dekker, New York, 1982)

    Google Scholar 

  46. R. Digilov, J. Cryst. Growth 249, 363 (2003)

    Article  ADS  Google Scholar 

  47. J. Zeldovich, J. Exp. Theor. Phys. 12, 525 (1942)

    Google Scholar 

  48. V.G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley/VCH, Berlin, 2007)

    Book  Google Scholar 

  49. I. Avramov, A. Milchev, J. Non-Cryst. Solids 104, 253 (1988)

    Article  ADS  Google Scholar 

  50. I. Avramov, A. Grzybowski, M. Paluch, J. Non-Cryst. Solids 355, 733 (2009)

    Article  ADS  Google Scholar 

  51. C.M. Roland, R. Casalini, Macromolecules 36, 1361 (2003)

    Article  ADS  Google Scholar 

  52. I. Avramov, J. Non-Cryst. Solids 351, 3163 (2005)

    Article  ADS  Google Scholar 

  53. M. Williams, R. Landel, D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955)

    Article  Google Scholar 

  54. C.A. Angell, J. Non-Cryst. Solids 73, 1 (1985)

    Article  ADS  Google Scholar 

  55. J.E. McKinney, H.V. Belcher, J. Res. Natl. Bur. Stand. A, Phys. Chem. 67, 43 (1963)

    Google Scholar 

  56. J.H. Wendorf, E.W. Fisher, Z. Koloid, Z. Polymer 251, 876 (1973)

    Google Scholar 

  57. S.J. Tao, J. Chem. Phys. 56, 5499 (1971)

    Article  ADS  Google Scholar 

  58. G. Dlübek, T. Lüpke, J. Stejny, M. Alam, M. Arnold, Macromolecules 33, 990 (2000)

    Article  ADS  Google Scholar 

  59. H.-L. Lv, B.-G. Wang, J.-C. Yang, Desalinisation 234, 33 (2008)

    Article  Google Scholar 

  60. Yu.P. Yampolskii, Russ. Chem. Rev. 76, 59 (2007)

    Article  ADS  Google Scholar 

  61. T. Miyamoto, K. Shibayama, J. Appl. Phys. 44, 5372 (1973)

    Article  ADS  Google Scholar 

  62. R. Simha, T. Somcynski, Macromolecules 2, 342 (1969)

    Article  ADS  Google Scholar 

  63. L. Utracki, R. Simha, Makromol. Theory Simul. 10, 17 (2001)

    Article  Google Scholar 

  64. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959)

    Article  ADS  Google Scholar 

  65. J.D. Ferry, Viscoelasticity of Polymers (Wiley, New York, 1961)

    Google Scholar 

  66. J. Blazevska-Gilev, J. Kupcik, J. Subrt, Z. Bastl, A. Galikova, J. Pola, Polym. Degrad. Stab. 91, 2241 (2006)

    Article  Google Scholar 

  67. J. Kupcik, J. Blazevska-Gilev, J. Pola, Macromol. Rapid. Commun. 26, 386 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lazare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazare, S., Elaboudi, I., Castillejo, M. et al. Model properties relevant to laser ablation of moderately absorbing polymers. Appl. Phys. A 101, 215–224 (2010). https://doi.org/10.1007/s00339-010-5754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5754-5

Keywords

Navigation