Skip to main content

Advertisement

Log in

High-voltage asymmetric supercapacitors operating in aqueous electrolyte

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical Supercapacitors. Plenum, New York

    Book  Google Scholar 

  2. Frackowiak E, Béguin F (2001) Carbon 39:937

    Article  Google Scholar 

  3. Laforgue A, Simon P, Sarrazin C, Fauvarque JF (1999) J Power Sources 80:142

    Article  ADS  Google Scholar 

  4. Mastragostino M, Arbizanni C, Soavi F (2001) J Power Sources 97–98:812

    Article  ADS  Google Scholar 

  5. Mastragostino M, Arbizzani C, Soavi F (2002) Solid State Ionics 148:493

    Article  Google Scholar 

  6. Jurewicz K, Delpeux S, Bertagna V, Béguin F, Frackowiak E (2001) Chem Phys Lett 347:36

    Article  ADS  Google Scholar 

  7. Wu NL (2002) Mater Chem Phys 75:6

    Article  Google Scholar 

  8. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220

    Article  ADS  Google Scholar 

  9. Lee HY, Kim SW, Lee HY (2001) Electrochem Solid-State Lett 4:A19

    Article  Google Scholar 

  10. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444

    Article  Google Scholar 

  11. Jeong YU, Manthiram A (2002) J Electrochem Soc 149:A1419

    Article  Google Scholar 

  12. Hu CC, Tsou TW (2002) Electrochem Commun 4:105

    Article  Google Scholar 

  13. Toupin M, Brousse T, Bélanger D (2002) Chem Mater 14:3946

    Article  Google Scholar 

  14. Conway BE, Birss V, Wojtowicz W (1997) J Power Sources 66:1

    Article  ADS  Google Scholar 

  15. Raymundo-Piñero E, Khomenko V, Frackowiak E, Béguin F (2005) J Electrochem Soc 152:A229

    Article  Google Scholar 

  16. Laforgue A, Simon P, Fauvarque JF, Sarrau JF, Lailler P (2001) J Electrochem Soc 148:A1130

    Article  Google Scholar 

  17. Park JH, Park OO (2002) J Power Sources 111:185

    Article  ADS  Google Scholar 

  18. Laforgue A, Simon P, Fauvarque JF, Mastragostino M, Soavi F, Sarrau JF, Lailler P, Conte M, Rossi E, Sanguatti S (2003) J Electrochem Soc 150:A645

    Article  Google Scholar 

  19. Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227

    Article  Google Scholar 

  20. Brousse T, Toupin M, Bélanger D (2004) J Electrochem Soc 151:A614

    Article  Google Scholar 

  21. Khomenko V, Frackowiak E, Béguin F (2005) Electrochim Acta 50:2499

    Article  Google Scholar 

  22. Kobayashi T, Yoneyama H, Tamura H (1984) J Electroanal Chem 161:429

    Article  Google Scholar 

  23. Kobayashi T, Yoneyama H, Tamura H (1984) J Electroanal Chem 177:281

    Article  Google Scholar 

  24. Barsukov V, Chivikov S (1996) Electrochim Acta 41:1773

    Article  Google Scholar 

  25. Barsukov VZ, Khomenko VG, Chivikov SV, Barsukov IV, Motronyuk TI (2001) Electrochim Acta 46:4083

    Article  Google Scholar 

  26. Jurewicz K, Frackowiak E, Béguin F (2004) Appl Phys A 78:981

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Béguin.

Additional information

PACS

82.45.Wx; 82.45.Yz; 82.47.Uv; 82.35.Cd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khomenko, V., Raymundo-Piñero, E., Frackowiak, E. et al. High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A 82, 567–573 (2006). https://doi.org/10.1007/s00339-005-3397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3397-8

Keywords

Navigation