Skip to main content
Log in

Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum Dlk1

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Imprinted genes are monoallelically expressed in a parent-of-origin manner and were previously identified in both marsupials and eutherians, but not in monotremes. Phylogenetic comparison of imprinted domains is a powerful tool for investigating the molecular and adaptive evolution of this unique gene regulatory mechanism. Herein, we report that multiple transcripts of Dlk1 (Delta, Drosophila, Homolog-like 1) are expressed in the opossum, but none are imprinted. Thus, we provide the first example of a reciprocally imprinted gene domain in which imprinting evolved in a common ancestor to eutherian rather than therian mammals. Moreover, the reciprocally imprinted Meg3 (Maternally Expressed Gene 3), found downstream of Dlk1 in eutherian mammals, is absent in the opossum. We propose that the Meg3 sequence integrated into the eutherian Dlk1 domain via a LINE-1 element and that Dlk1 became imprinted in eutherian mammals only after this downstream integration. These findings clearly demonstrate that imprinted genes did not all evolve before the divergence of marsupials and eutherians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amarger V, Nguyen M, Van Laere AS, Braunschweig M, Nezer C, et al. (2002) Comparative sequence analysis of the INS-IGF2-H19 gene cluster in pigs. Mamm Genome 13: 388–398

    Article  CAS  PubMed  Google Scholar 

  • Astuti D, Latif F, Wagner K, Gentle D, Cooper WN, et al. (2005) Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms’ tumour. Br J Cancer 92: 1574–1580

    Article  CAS  PubMed  Google Scholar 

  • Baladron V, Ruiz-Hidalgo MJ, Nueda ML, Diaz-Guerra MJ, Garcia-Ramirez JJ, et al. (2005) dlk acts as a negative regulator of Notch 1 activation through interactions with specific EGF - like repeats. Exp cell Res 303, 343–359

    Article  CAS  PubMed  Google Scholar 

  • Bushman F (2004) Gene regulation: selfish elements make a mark. Nature 429: 253–255

    Article  CAS  PubMed  Google Scholar 

  • Carlsson C, Tornehave D, Lindberg K, Galante P, Billestrup N, et al. (1997) Growth hormone and prolactin stimulate the expression of rat preadipocyte factor-1/delta-like protein in pancreatic islets: molecular cloning and expression pattern during development and growth of the endocrine pancreas. Endocrinology 138: 3940–3948

    Article  CAS  PubMed  Google Scholar 

  • Casavant NC, Scott L, Cantrell MA, Wiggins LE, Baker RJ, et al. (2000) The end of the LINE?: lack of recent L1 activity in a group of South American rodents. Genetics 154: 1809–1817

    CAS  PubMed  Google Scholar 

  • Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, et al. (2001) Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res 11: 850–862

    Article  CAS  PubMed  Google Scholar 

  • Croteau S, Charron MC, Latham KE, Naumova AK (2003) Alternative splicing and imprinting control of the Meg3/Gtl2-Dlk1 locus in mouse embryos. Mamm Genome 14: 231–241

    Article  CAS  PubMed  Google Scholar 

  • Davis E, Jensen CH, Schroder HD, Farnir F, Shay–Hadfield T, et al. (2004) Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr Biol 14: 1858–1862

    Article  CAS  PubMed  Google Scholar 

  • Evans HK, Wylie AA, Murphy SK, Jirtle RL (2001) The neuronatin gene resides in a “micro-imprinted” domain on human chromosome 20q11.2. Genomics 77: 99–104

    Article  CAS  PubMed  Google Scholar 

  • Evans HK, Weidman JR, Cowley DO, Jirtle RL (2005) Comparative phylogenetic analysis of Blcap/Nnat reveals eutherian-specific imprinted gene. Mol Biol Evol 22: 1740–1748

    CAS  PubMed  Google Scholar 

  • Falls JG, Pulford DJ, Wylie AA, Jirtle RL (1999) Genomic imprinting: implications for human disease. Am J Pathol 154: 635–647

    CAS  PubMed  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916

    Article  CAS  PubMed  Google Scholar 

  • Ferguson–Smith AC (2000) Genetic imprinting: silencing elements have their say. Curr Biol 10: R872–R875

    CAS  PubMed  Google Scholar 

  • Fleming RJ (1998) Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol 9: 599–607

    Article  CAS  PubMed  Google Scholar 

  • Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, et al. (2002) Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res 12: 1496–1506

    Article  CAS  PubMed  Google Scholar 

  • Garces C, Ruiz–Hidalgo MJ, Bonvini E, Goldstein J, Laborda J (1999) Adipocyte differentiation is modulated by secreted delta-like (dlk) variants and requires the expression of membrane-associated dlk. Differentiation 64: 103–114

    Article  CAS  PubMed  Google Scholar 

  • Georgiades P, Chierakul C, Ferguson–Smith AC (1998) Parental origin effects in human trisomy for chromosome 14q: implications for genomic imprinting. J Med Genet 35: 821–824

    CAS  PubMed  Google Scholar 

  • Georgiades P, Watkins M, Surani MA, Ferguson–Smith AC (2000) Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development 127: 4719–4728

    CAS  PubMed  Google Scholar 

  • Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, et al. (2000) The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics 66: 76–86

    Article  CAS  PubMed  Google Scholar 

  • Haig D (1997) Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc R Soc Lond B Biol Sci 264: 1657–1662

    CAS  Google Scholar 

  • Haig D (2004) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38: 553–585

    Article  CAS  PubMed  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64: 1045–1046

    CAS  PubMed  Google Scholar 

  • Hansen LH, Madsen B, Teisner B, Nielsen JH, Billestrup N (1998) Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation. Mol Endocrinol 12: 1140–1149

    Article  CAS  PubMed  Google Scholar 

  • Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, et al. (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423: 91–96

    Article  CAS  PubMed  Google Scholar 

  • Horike S, Cai S, Miyano M, Cheng JF, Kohwi–Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37: 31–40

    CAS  PubMed  Google Scholar 

  • Iwashita S, Osada N, Itoh T, Sezaki M, Oshima K, et al. (2003) A transposable element-mediated gene divergence that directly produces a novel type bovine Bcnt protein including the endonuclease domain of RTE-1. Mol Bio Evol 20: 1556–1563

    CAS  Google Scholar 

  • John RM, Aparicio SA, Ainscough JF, Arney KL, Khosla S, et al. (2001) Imprinted expression of neuronatin from modified BAC transgenes reveals regulation by distinct and distant enhancers. Dev Biol 236: 387–399

    Article  CAS  PubMed  Google Scholar 

  • Kaneko–Ishino T, Kohda T, Ishino F (2003) The regulation and biological significance of genomic imprinting in mammals. J Biochem (Tokyo) 133: 699–711

    CAS  Google Scholar 

  • Kaneta M, Osawa M, Sudo K, Nakauchi H, Farr AG, et al. (2000) A role for pref-1 and HES-1 in thymocyte development. J Immunol 164: 256–264

    CAS  PubMed  Google Scholar 

  • Killian JK, Byrd JC, Jirtle JV, Munday BL, Stoskopf MK, et al. (2000) M6P/IGF2R imprinting evolution in mammals. Mol Cell 5: 707–716

    Article  CAS  PubMed  Google Scholar 

  • Killian JK, Nolan CM, Stewart N, Munday BL, Andersen NA, et al. (2001a) Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool 291: 205–212

    Article  CAS  Google Scholar 

  • Killian JK, Nolan CM, Wylie AA, Li T, Vu TH, et al. (2001b) Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet 10: 1721–1728

    Article  CAS  Google Scholar 

  • Kimura MI, Kazuki Y, Kashiwagi A, Kai Y, Abe S, et al. (2004) Dlx5, the mouse homologue of the human-imprinted DLX5 gene, is biallelically expressed in the mouse brain. J Hum Genet 49: 273–277

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Wagatsuma H, Ono R, Ichikawa H, Yamazaki M, et al. (2000) Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouse Meg3/Gtl2 and human MEG3. Genes Cells 5: 1029–1037

    CAS  PubMed  Google Scholar 

  • Laborda J (2000) The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol 15: 119–129

    CAS  PubMed  Google Scholar 

  • Li L, Forman SJ, Bhatia R (2005) Expression of DLK1 in hematopoietic cells results in inhibition of differentiation and proliferation. Oncogene 27: 4472–4476

    Google Scholar 

  • Lin SP, Youngson N, Takada S, Seitz H, Reik W, et al. (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35: 97–102

    Article  CAS  PubMed  Google Scholar 

  • Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW, et al. (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25: 19–21

    CAS  PubMed  Google Scholar 

  • Moon YS, Smas CM, Lee K, Villena JA, Kim KH, et al. (2002) Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 22: 5585–5592

    Article  CAS  PubMed  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. Bioessays 25: 577–588

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, et al. (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618

    Article  CAS  PubMed  Google Scholar 

  • Murphy SK, Freking BA, Smith TP, Leymaster K, Nolan CM, et al. (2005) Abnormal postnatal maintenance of elevated DLK1 transcript levels in callipyge sheep. Mamm Genome 16: 171–183

    Article  CAS  PubMed  Google Scholar 

  • Nabetani A, Hatada I, Morisaki H, Oshimura M, Mukai T (1997) Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol Cell Biol 17: 789–798

    CAS  PubMed  Google Scholar 

  • O’Neill MJ, Ingram RS, Vrana PB, Tilghman SM (2000) Allelic expression of IGF2 in marsupials and birds. Dev Genes Evol 210: 18–20

    CAS  PubMed  Google Scholar 

  • Okita C, Meguro M, Hoshiya H, Haruta M, Sakamoto YK, et al. (2003) A new imprinted cluster on the human chromosome 7q21-q31, identified by human-mouse monochromosomal hybrids. Genomics 81: 556–559

    Article  CAS  PubMed  Google Scholar 

  • Onyango P, Miller W, Lehoczky J, Leung CT, Birren B, et al. (2000) Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res 10: 1697–1710

    Article  CAS  PubMed  Google Scholar 

  • Paulsen M, Takada S, Youngson NA, Benchaib M, Charlier C, et al. (2001) Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res 11: 2085–2094

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Murrell A (2000) Genomic imprinting. silence across the border. Nature 405: 408–409

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2: 21–32

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JV, Matteson PG, Jones BK, Guan XJ, Tilghman SM (2000) The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev 14: 1997–2002

    CAS  PubMed  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415: 810–813

    CAS  PubMed  Google Scholar 

  • Smas CM, Sul HS (1993) Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 73: 725–734

    Article  CAS  PubMed  Google Scholar 

  • Smit M, Segers K, Carrascosa LG, Shay T, Baraldi F, et al. (2003) Mosaicism of Solid Gold supports the causality of a noncoding A-to-G transition in the determinism of the callipyge phenotype. Genetics 163: 453–456

    CAS  PubMed  Google Scholar 

  • Sutton VR, McAlister WH, Bertin TK, Kaffe S, Wang JC, et al. (2003) Skeletal defects in paternal uniparental disomy for chromosome 14 are re-capitulated in the mouse model (paternal uniparental disomy 12). Hum Genet 113: 447–451

    Article  PubMed  Google Scholar 

  • Suzuki S, Renfree MB, Pask AJ, Shaw G, Kobayashi S, Tet al. (2005) Genomic imprinting of IGF2, p57(KIP2) and PEG1/MEST in a marsupial, the tammar wallaby. Mech Dev 122: 213–222

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Tevendale M, Baker J, Georgiades P, Campbell E, et al. (2000) Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr Biol 10: 1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G, et al. (2002) Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. Hum Mol Genet 11: 77–86

    Article  CAS  PubMed  Google Scholar 

  • Vrana PB, Guan XJ, Ingram RS, Tilghman SM (1998) Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet 20: 362–365

    CAS  PubMed  Google Scholar 

  • Walter J, Paulsen M (2003) The potential role of gene duplications in the evolution of imprinting mechanisms. Hum Mol Genet 12 Spec No 2, R215–R220

    PubMed  Google Scholar 

  • Weidman JR, Murphy SK, Nolan CM, Dietrich FS, Jirtle RL (2004) Phylogenetic footprint analysis of IGF2 in extant mammals. Genome Res 14: 1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Wylie AA, Murphy SK, Orton TC, Jirtle RL (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10: 1711–1718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Heather Evans for critical review of the manuscript and Michelle Clamp of the Broad Institute for her help in accessing updated M. domestica sequence data. This study was supported by NIH grants CA25951, ES08823, and ES13053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy L. Jirtle.

Additional information

URL: http://www.geneimprint.com

Nucleotide sequence data reported are available in the GenBank database under the accession number AY972866.

Website References

Website References

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidman, J.R., Maloney, K.A. & Jirtle, R.L. Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum Dlk1. Mamm Genome 17, 157–167 (2006). https://doi.org/10.1007/s00335-005-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0116-x

Keywords

Navigation