Skip to main content

Advertisement

Log in

Evaluation of Chondrocalcinosis and Associated Knee Joint Degeneration Using MR Imaging: Data from the Osteoarthritis Initiative

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the ability of different MRI sequences to detect chondrocalcinosis within knee cartilage and menisci, and to analyze the association with joint degeneration.

Methods

Subjects with radiographic knee chondrocalcinosis (n = 90, age 67.7 ± 7.3 years, 50 women) were selected from the Osteoarthritis Initiative and matched to controls without radiographic chondrocalcinosis (n = 90). Visualization of calcium-containing crystals (CaC) was compared between 3D T1-weighted gradient-echo (T1GE), 3D dual echo steady-state (DESS), 2D intermediate-weighted (IW), and proton density (PD)-weighted fast spin-echo (FSE) sequences obtained with 3T MRI and correlated with a semiquantitative CaC score obtained from radiographs. Structural abnormalities were assessed using Whole-Organ MRI Score (WORMS) and logistic regression models were used to compare cartilage compartments with and without CaC.

Results

Correlations between CaC counts of MRI sequences and degree of radiographic calcifications were highest for GE (rT1GE = 0.73, P < 0.001; rDESS = 0.68, P < 0.001) compared to other sequences (P > 0.05). Meniscus WORMS was significantly higher in subjects with chondrocalcinosis compared to controls (P = 0.005). Cartilage defects were significantly more frequent in compartments with CaC than without (patella: P = 0.006; lateral tibia: P < 0.001; lateral femur condyle: P = 0.017).

Conclusions

Gradient-echo sequences were most useful for the detection of chondrocalcinosis and presence of CaC was associated with higher prevalence of cartilage and meniscal damage.

Key Points

• Magnetic resonance imaging is useful for assessing burden of calcium-containing crystals (CaC).

• Gradient-echo sequences are superior to fast spin echo sequences for CaC imaging.

• Presence of CaC is associated with meniscus and cartilage degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BMEP:

Bone marrow edema pattern

BCP:

Basic calcium phosphate

CaC:

Calcium-containing crystal

CPPD:

Calcium pyrophosphate deposition

DESS:

Dual echo steady-state

FSE:

Fast spin echo

GE:

Gradient echo

ICC:

Intra-class correlation coefficients

KL:

Kellgren–Lawrence

OA:

Osteoarthritis

OAI:

Osteoarthritis Initiative

WORMS:

Whole-Organ Magnetic Resonance Imaging Score

References

  1. Ea HK, Liote F (2009) Advances in understanding calcium-containing crystal disease. Curr Opin Rheumatol 21:150–157

    Article  CAS  PubMed  Google Scholar 

  2. Wise CM (2007) Crystal-associated arthritis in the elderly. Rheum Dis Clin North Am 33:33–55

    Article  PubMed  Google Scholar 

  3. Mitsuyama H, Healey RM, Terkeltaub RA, Coutts RD, Amiel D (2007) Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthritis Cartilage 15:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neogi T, Nevitt M, Niu J et al (2006) Lack of association between chondrocalcinosis and increased risk of cartilage loss in knees with osteoarthritis: results of two prospective longitudinal magnetic resonance imaging studies. Arthritis Rheum 54:1822–1828

    Article  CAS  PubMed  Google Scholar 

  5. Ea HK, Nguyen C, Bazin D et al (2011) Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum 63:10–18

    Article  CAS  PubMed  Google Scholar 

  6. Nowatzky J, Howard R, Pillinger MH, Krasnokutsky S (2010) The role of uric acid and other crystals in osteoarthritis. Curr Rheumatol Rep 12:142–148

    Article  CAS  PubMed  Google Scholar 

  7. Fuerst M, Bertrand J, Lammers L et al (2009) Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 60:2694–2703

    Article  CAS  PubMed  Google Scholar 

  8. Sun Y, Mauerhan DR, Honeycutt PR et al (2010) Calcium deposition in osteoarthritic meniscus and meniscal cell culture. Arthritis Res Ther 12:R56

  9. Jubeck B, Gohr C, Fahey M et al (2008) Promotion of articular cartilage matrix vesicle mineralization by type I collagen. Arthritis Rheum 58:2809–2817

    Article  PubMed  Google Scholar 

  10. Steinbach LS (2004) Calcium pyrophosphate dihydrate and calcium hydroxyapatite crystal deposition diseases: imaging perspectives. Radiol Clin North Am 42:185–205, vii

    Article  PubMed  Google Scholar 

  11. Misra D, Guermazi A, Sieren JP et al (2015) CT imaging for evaluation of calcium crystal deposition in the knee: initial experience from the Multicenter Osteoarthritis (MOST) study. Osteoarthritis Cartilage 23:244–248

    Article  CAS  PubMed  Google Scholar 

  12. Beltran J, Marty-Delfaut E, Bencardino J et al (1998) Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations. Skeletal Radiol 27:369–374

    Article  CAS  PubMed  Google Scholar 

  13. Suan JC, Chhem RK, Gati JS, Norley CJ, Holdsworth DW (2005) 4 T MRI of chondrocalcinosis in combination with three-dimensional CT, radiography, and arthroscopy: a report of three cases. Skeletal Radiol 34:714–721

    Article  CAS  PubMed  Google Scholar 

  14. Checa A, Chun W (2015) Rates of meniscal tearing in patients with chondrocalcinosis. Clin Rheumatol 34:573–577

    Article  PubMed  Google Scholar 

  15. Lefevre N, Naouri JF, Herman S, Gerometta A, Klouche S, Bohu Y (2016) A current review of the meniscus imaging: proposition of a useful tool for its radiologic analysis. Radiol Res Pract 2016:25

    Google Scholar 

  16. Wadhwa V, Cho G, Moore D, Pezeshk P, Coyner K, Chhabra A (2016) T2 black lesions on routine knee MRI: differential considerations. Eur Radiol 26:2387–2399

    Article  PubMed  Google Scholar 

  17. Peterfy C, Li J, Zaim S et al (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 32:128–132

    Article  CAS  PubMed  Google Scholar 

  18. Felson DT, Nevitt MC, Yang M et al (2008) A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol 35:2047–2054

    PubMed  PubMed Central  Google Scholar 

  19. Smith HE, Mosher TJ, Dardzinski BJ et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14:50–55

    Article  PubMed  Google Scholar 

  20. Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16:1433–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190

    Article  CAS  PubMed  Google Scholar 

  22. Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM (2010) Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage 18:776–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bucknor MD, Nardo L, Joseph GB et al (2015) Association of cartilage degeneration with four year weight gain- 3T MRI data from the osteoarthritis initiative. Osteoarthritis Cartilage. doi:10.1016/j.joca.2014.10.013

    PubMed  PubMed Central  Google Scholar 

  24. Kaushik S, Erickson JK, Palmer WE, Winalski CS, Kilpatrick SJ, Weissman BN (2001) Effect of chondrocalcinosis on the MR imaging of knee menisci. AJR Am J Roentgenol 177:905–909

    Article  CAS  PubMed  Google Scholar 

  25. Jungmann PM, Nevitt MC, Baum T et al (2015) Relationship of unilateral total hip arthroplasty (THA) to contralateral and ipsilateral knee joint degeneration - a longitudinal 3T MRI study from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 23:1144–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stehling C, Liebl H, Krug R et al (2010) Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology 254:509–520

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kretzschmar M, Lin W, Nardo L et al (2015) Association of physical activity measured by accelerometer, knee joint abnormalities and cartilage T2-measurements obtained from 3T MRI: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). doi:10.1002/acr.22586

    Google Scholar 

  28. Riederer I, Karampinos DC, Settles M et al (2015) Double inversion recovery sequence of the cervical spinal cord in multiple sclerosis and related inflammatory diseases. AJNR Am J Neuroradiol 36:219–225

    Article  CAS  PubMed  Google Scholar 

  29. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    CAS  PubMed  Google Scholar 

  30. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  PubMed  Google Scholar 

  31. Baum T, Joseph GB, Arulanandan A et al (2012) Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 64:248–255

    Article  Google Scholar 

  32. Baum T, Stehling C, Joseph GB et al (2012) Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative. J Magn Reson Imaging 35:370–378

    Article  PubMed  Google Scholar 

  33. Pan J, Pialat JB, Joseph T et al (2011) Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the osteoarthritis initiative. Radiology 261:507–515

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abreu M, Johnson K, Chung CB et al (2004) Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol 33:392–398

    Article  CAS  PubMed  Google Scholar 

  35. Bloecker K, Wirth W, Guermazi A, Hitzl W, Hunter DJ, Eckstein F (2015) Longitudinal change in quantitative meniscus measurements in knee osteoarthritis--data from the osteoarthritis initiative. Eur Radiol 25:2960–2968

    Article  PubMed  Google Scholar 

  36. Eckstein F, Boudreau R, Wang Z et al (2016) Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: a longitudinal case-control study from the osteoarthritis initiative. Eur Radiol 26:1942–1951

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Thomas M. Link, MD, PhD, Department of Radiology and Biomedical Imaging, University of California, San Francisco. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The OAI is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. Written informed consent was obtained from all subjects in this study. Institutional Review Board approval was obtained. This manuscript was prepared using an OAI public use data set and has received the approval of the OAI Publications Committee based on a review of its scientific content and data interpretation. The analyses in this study were funded through the NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases grants R01AR064771 and P50-AR060752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra S. Gersing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gersing, A.S., Schwaiger, B.J., Heilmeier, U. et al. Evaluation of Chondrocalcinosis and Associated Knee Joint Degeneration Using MR Imaging: Data from the Osteoarthritis Initiative. Eur Radiol 27, 2497–2506 (2017). https://doi.org/10.1007/s00330-016-4608-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4608-8

Keywords

Navigation