Skip to main content
Log in

Recent advances in plant thermomemory

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This review summarizes the process of thermal acquired tolerance in plants and the knowledge gap compared to systemic acquired resistance that a plant shows after pathogen inoculation.

Abstract

Plants are continuously challenged by several biotic stresses such as pests and pathogens, or abiotic stresses like high light, UV radiation, drought, salt, and very high or low temperature. Interestingly, for most stresses, prior exposure makes plants more tolerant during the subsequent exposures, which is often referred to as acclimatization. Research of the last two decades reveals that the memory of most of the stresses is associated with epigenetic changes. Heat stress causes damage to membrane proteins, denaturation and inactivation of various enzymes, and accumulation of reactive oxygen species leading to cell injury and death. Plants are equipped with thermosensors that can recognize certain specific changes and activate protection machinery. Phytochrome and calcium signaling play critical roles in sensing sudden changes in temperature and activate cascades of signaling, leading to the production of heat shock proteins (HSPs) that keep protein-unfolding under control. Heat shock factors (HSFs) are the transcription factors that read the activation of thermosensors and induce the expression of HSPs. Epigenetic modifications of HSFs are likely to be the key component of thermal acquired tolerance (TAT). Despite the advances in understanding the process of thermomemory generation, it is not known whether plants are equipped with systemic activation thermal protection, as happens in the form of systemic acquired resistance (SAR) upon pathogen infection. This review describes the recent advances in the understanding of thermomemory development in plants and the knowledge gap in comparison with SAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APx:

Ascorbate peroxidase

BRM:

Brahma

CDPK:

Calcium-dependent protein kinases

CNGC:

Cyclic nucleotide gated calcium channel

GCN5:

General control nonderepressible5

HATs:

Histone acetyl transferase

HD2C:

Histone deacetylases 2C

HDACs:

Histone deacetylases

HDMs:

Histone demethylase

HS:

Heat stress

HLP1:

Hikeshi-like proteins 1

HMTs:

Histone methyl transferases

HSE:

Heat shock element

HSF:

Heat shock transcription factor

HSP:

Heat shock proteins

HTT5:

Heat inducible Tas1 target 5

IP3:

Inositol-1,4,5-triphosphate

MGDG:

Monogalactosyldiacylglycerol

NAD+ :

Nicotinamide adenine diphosphate

PhyB:

Phytochrome B

PIF4:

Phytochrome interacting factor 4

PIP2:

Phophatidyl-4,5-inositol bisphosphate

PIPK:

Phosphatidylinositol phosphate kinase

PLD:

Phospholipase D

PS-II:

Photosystem-II

RBOHD:

Respiratory burst oxidase homolog

REF6:

Relative of early flowering 6

ROS:

Reactive oxygen species

SAR:

Systemic acquired resistance

sHSP:

Smaller heat shock proteins

SGIP1:

SGS3 interacting proteins

SGS3:

Suppressor of gene silencing 3

SWI/SNF:

Switch/Suc non-fermenting

TAT:

Thermal acquired tolerance

UVH6:

Ultraviolet hypersensitivity6

References

  • Banday ZZ, Nandi AK (2015) Interconnection between flowering time control and activation of systemic acquired resistance. Front Plant Sci 6:174

    PubMed  PubMed Central  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    CAS  PubMed  Google Scholar 

  • Bäurle I, Trindade I (2020) Chromatin regulation of somatic abiotic stress memory. J Exp Bot 71(17):5269–5279. https://doi.org/10.1093/jxb/eraa098

    Article  PubMed  Google Scholar 

  • Bernfur K, Rutsdottir G, Emanuelsson C (2017) The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants. Protein Sci 26:1773–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blakeslee JJ, Spatola Rossi T, Kriechbaumer V (2019) Auxin biosynthesis: spatial regulation and adaptation to stress. J Exp Bot 70:5041–5049

    CAS  PubMed  Google Scholar 

  • Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Kabelitz T, Jähne F, Graf A, Kappel C, Bäurle I (2016) Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife 5:e17061. https://doi.org/10.7554/eLife.17061

    Article  PubMed  PubMed Central  Google Scholar 

  • Buszewicz D, Archacki R, Palusiński A, Kotliński M, Fogtman A, Iwanicka-Nowicka R, Sosnowska K, Kuciński J, Pupel P, Olędzki J, Dadlez M, Misicka A, Jerzmanowski A, Koblowska MK (2016) HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. Plant Cell Environ 39:2108–2122

    CAS  PubMed  Google Scholar 

  • Byeon B, Bilichak A, Kovalchuk I (2019) Transgenerational response to heat stress in the form of differential expression of noncoding RNA fragments in Brassica rapa plants. Plant Genome. https://doi.org/10.3835/plantgenome2018.04.0022

    Article  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117

    CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    CAS  PubMed  Google Scholar 

  • Danilova MN, Kudryakova NV, Andreeva AA, Doroshenko AS, Pojidaeva ES, Kusnetsov VV (2018) Differential impact of heat stress on the expression of chloroplast-encoded genes. Plant Physiol Biochem 129:90–100

    CAS  PubMed  Google Scholar 

  • Dempsey DA, Klessig DF (2012) SOS - too many signals for systemic acquired resistance? Trends Plant Sci 17:538–545

    CAS  PubMed  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    PubMed  PubMed Central  Google Scholar 

  • Fan Y, Ma C, Huang Z, Abid M, Jiang S, Dai T, Zhang W, Ma S, Jiang D, Han X (2018) Heat priming during early reproductive stages enhances thermo-tolerance to post-anthesis heat stress via improving photosynthesis and plant productivity in winter wheat (Triticum aestivum L.). Front Plant Sci 9:805

    PubMed  PubMed Central  Google Scholar 

  • Finka A, Cuendet AF, Maathuis FJ, Saidi Y, Goloubinoff P (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24:3333–3348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    CAS  PubMed  Google Scholar 

  • Härndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, Sundby C (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4:129–138

    PubMed  PubMed Central  Google Scholar 

  • Higashi Y, Okazaki Y, Takano K, Myouga F, Shinozaki K, Knoch E, Fukushima A, Saito K (2018) HEAT INDUCIBLE LIPASE1 remodels chloroplastic monogalactosyldiacylglycerol by liberating α-linolenic acid in Arabidopsis leaves under heat stress. Plant Cell 30:1887–1905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29:455–464

    CAS  Google Scholar 

  • Hu Z, Song N, Zheng M, Liu X, Liu Z, Xing J, Ma J, Guo W, Yao Y, Peng H, Xin M, Zhou DX, Ni Z, Sun Q (2015) Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J 84:1178–1191

    CAS  PubMed  Google Scholar 

  • Huo L, Sun X, Guo Z, Jia X, Che R, Sun Y, Zhu Y, Wang P, Gong X, Ma F (2020) MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts. Hortic Res 7:21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    CAS  PubMed  Google Scholar 

  • Kumar SV, Lucyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14:105

    PubMed  PubMed Central  Google Scholar 

  • Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha DK, Jagadish KS (2015) Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ 38:2171–2192

    CAS  PubMed  Google Scholar 

  • Ling Y, Serrano N, Gao G, Atia M, Mokhtar M, Woo YH, Bazin J, Veluchamy A, Benhamed M, Crespi M, Gehring C, Reddy ASN, Mahfouz MM (2018) Thermopriming triggers splicing memory in Arabidopsis. J Exp Bot 69:2659–2675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Gao F, Cui SJ, Han JL, Sun DY, Zhou RG (2006) Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res 16:394–400

    CAS  PubMed  Google Scholar 

  • Liu J, Sun N, Liu M, Liu J, Du B, Wang X, Qi X (2013) An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiol 162:512–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Feng L, Gu X, Deng X, Qiu Q, Li Q, Zhang Y, Wang M, Deng Y, Wang E, He Y, Bäurle I, Li J, Cao X, He Z (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29:379–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Able AJ, Able JA (2020) Transgenerational effects of water-deficit and heat stress on germination and seedling vigour-new insights from Durum wheat microRNAs. Plants (Basel) 9:189. https://doi.org/10.3390/plants9020189

    Article  CAS  Google Scholar 

  • Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genom 271:11–21

    CAS  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    CAS  PubMed  Google Scholar 

  • Migicovsky Z, Yao Y, Kovalchuk I (2014) Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal Behav 9:e27971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishkind M, Vermeer JE, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J 60:10–21

    CAS  PubMed  Google Scholar 

  • Monte I, Kneeshaw S, Franco-Zorrilla JM, Chini A, Zamarreno AM, Garcia-Mina JM, Solano R (2020) An ancient COI1-independent function for reactive electrophilic oxylipins in thermotolerance. Curr Biol 30(962–971):e963

    Google Scholar 

  • Muench M, Hsin CH, Ferber E, Berger S, Mueller MJ (2016) Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors. J Exp Bot 67:6139–6148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prerostova S, Dobrev PI, Kramna B, Gaudinova A, Knirsch V, Spichal L, Zatloukal M, Vankova R (2020) Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of arabidopsis. Front Plant Sci 11:87. https://doi.org/10.3389/fpls.2020.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savchenko G, Klyuchareva E, Abramchik L, Serdyuchenko E (2002) Effect of periodic heat shock on the inner membrane system of etioplasts. Russ J Plant Physiol 49:349–359

    CAS  Google Scholar 

  • Sedaghatmehr M, Mueller-Roeber B, Balazadeh S (2016) The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Commun 7:12439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Banday ZZ, Shukla BN, Laxmi A (2019) Glucose-regulated HLP1 acts as a key molecule in governing thermomemory. Plant Physiol 180:1081–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma L, Priya M, Kaushal N, Bhandhari K, Chaudhary S, Dhankher OP, Prasad PVV, Siddique KHM, Nayyar H (2020) Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops. J Exp Bot 71:569–594

    CAS  PubMed  Google Scholar 

  • Singh V, Roy S, Giri MK, Chaturvedi R, Chowdhury Z, Shah J, Nandi AK (2013) Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. Mol Plant Microbe Interact 26:1079–1088

    CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    CAS  PubMed  Google Scholar 

  • Sundby C, Härndahl U, Gustavsson N, Ahrman E, Murphy DJ (2005) Conserved methionines in chloroplasts. Biochim Biophys Acta 1703:191–202

    CAS  PubMed  Google Scholar 

  • Suter L, Widmer A (2013) Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS ONE 8:e60364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Wang G, Zhou JM (2017) Receptor kinases in plant–pathogen interactions: more than pattern recognition. Plant Cell 29:618–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda M, Seki M (2020) Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol 182:15–26

    CAS  PubMed  Google Scholar 

  • Ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int J Mol Sci 20:5321. https://doi.org/10.3390/ijms20215321

    Article  CAS  PubMed Central  Google Scholar 

  • Vu LD, Gevaert K, De Smet I (2019) Feeling the heat: searching for plant thermosensors. Trends Plant Sci 24:210–219

    CAS  PubMed  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016a) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xin C, Cai J, Zhou Q, Dai T, Cao W, Jiang D (2016b) Heat priming induces trans-generational tolerance to high temperature stress in wheat. Front Plant Sci 7:501

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, Xue Y (2017) WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res 45:D264–d270

    CAS  PubMed  Google Scholar 

  • Zhou J, Wang J, Cheng Y, Chi YJ, Fan B, Yu JQ, Chen Z (2013) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet 9:e1003196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2014a) RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. J Exp Bot 65:595–607

    CAS  PubMed  Google Scholar 

  • Zhou J, Zhang Y, Qi J, Chi Y, Fan B, Yu JQ, Chen Z (2014b) E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS Genet 10:e1004116

    PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang Z, Wang X, Li X, Zhang Z, Fan B, Zhu C, Chen Z (2018) Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses. Autophagy 14:487–504

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the UGC Grant (F.No. 6-8/2017(IC)). Anand Nishad is a recipient of the UGC non-NET fellowship.

Funding

This study was funded by UGC grant (F.No. 6-8/2017(IC)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Nandi.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishad, A., Nandi, A.K. Recent advances in plant thermomemory. Plant Cell Rep 40, 19–27 (2021). https://doi.org/10.1007/s00299-020-02604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02604-1

Keywords

Navigation