Skip to main content
Log in

Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L.

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We cloned a dehydrins gene CaDHN1 from pepper and the expression of CaDHN1 was markedly upregulated by cold, salt, osmotic stresses and salicylic acid (SA) treatment.

Abstract

Dehydrins (DHNs) are a subfamily of group 2 late embryogenesis-abundant (LEA) proteins that are thought to play an important role in enhancing abiotic stress tolerance in plants. In this study, a DHN EST (Expressed Sequence Tag) was obtained from 6 to 8 true leaves seedlings of pepper cv P70 (Capsicum annuum L.) by our laboratory. However, the DHN gene in pepper was not well characterized. According to this EST sequence, we isolated a DHN gene, designated as CaDHN1, and investigated the response and expression of this gene under various stresses. Our results indicated that CaDHN1 has the DHN-specific and conserved K- and S- domain and encodes 219 amino acids. Phylogenetic analysis showed that CaDHN1 belonged to the SKn subgroup. Tissue expression profile analysis revealed that CaDH N1 was expressed predominantly in fruits and flowers. The expression of CaDHN1 was markedly upregulated in response to cold, salt, osmotic stresses and salicylic acid (SA) treatment, but no significant change by abscisic acid (ABA) and heavy metals treatment. Loss of function of CaDHN1 using the virus-induced gene silencing (VIGS) technique led to decreased tolerance to cold-, salt- and osmotic-induced stresses. Overall, these results suggest that CaDHN1 plays an important role in regulating the abiotic stress resistance in pepper plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry 68(9):945–951

    CAS  PubMed  Google Scholar 

  • Amara I, Odena A, Oliveira E, Moreno A, Masmoudi K, Pages M, Goday A (2012) Insights into maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol 53:312–329

    Article  CAS  PubMed  Google Scholar 

  • Arkus KAJ, Cahoon EB, Jez JM (2005) Mechanistic analysis of wheat chlorophyllase. Arch Biochem Biophys 438:146–155

    Article  CAS  PubMed  Google Scholar 

  • Artlip TS, Callahan AM, Bassett CL, Wisniewski ME (1997) Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica). Plant Mol Biol 33(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. doi:10.1186/1471-2229-2-5

    PubMed Central  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Chen RG, Guo WL, Yin YX, Gong ZH (2014) A novel F-Box protein CaF-Box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). Int J Mol Sci 15:2413–2430

    Article  PubMed Central  PubMed  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Close TJ (2000) A newly identified barley gene, Dhn12, encoding an YSK2 DHN, is located on chromosome 6H and has embryo-specific expression. Theor Appl Genet 100:1274–1278

    Article  CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signalingin plants under abiotic stress. Plant Signal Behav 8(4):e23681. doi:10.4161/psb.23681

    Article  PubMed  Google Scholar 

  • Chung E, Kim SY, Yi SY, Choi D (2003) Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol Cells 15(3):327–332

    CAS  PubMed  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L.cv.Bukang). Mol Cells 17:377–380

    CAS  PubMed  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2005) Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry. Plant Sci 168:949–957

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Guo WL, Chen RG, Gong ZH, Yin YX, Li DW (2013) Suppression subtractive hybridization analysis of genes regulated by application of exogenous abscisic acid in pepper plant (Capsicum annuum L.) leaves under chilling stress. PLoS ONE 8(6):e66667. doi:10.1371/journal.pone.0066667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT (2007) The role of dehydrins in plant response to cold. Biol Plantarum 51:601–617

    Article  CAS  Google Scholar 

  • Kovacs D, Agoston B, Tompa P (2008) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3:710–713

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol 15:137–144

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Zhao LX, Kai GY, Yu SW, Cao YF, Pang YZ, Sun XF, Tang KX (2004) Cloning and expression analysis of a water stress-induced gene from Brassica oleracea. Plant Physiol Biochem 42:789–794

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yu B, Gao Y, Dai AH (2011) Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. Plant Physiol 168:927–934

    Article  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yu CY, Li HX, Ouyang B, Wang TT, Zhang JH, Wang X, Ye ZB (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009) Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem 47:116–122

    Article  PubMed  Google Scholar 

  • Ochoa-Alfaro AE, Rodrıguez-Kessler M, Perez-Morales M, Delgado-Sanchez BP, Cuevas-Velazquez CL, Gomez-Anduro G, Jimenez-Bremont JF (2012) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta 235:565–578

    Article  CAS  PubMed  Google Scholar 

  • Qiu HL, Zhang LH, Liu C, Li H, Wang AY, Liu HH, Zhu JB (2014) Cloning and characterization of a novel dehydrin gene, SiDhn2, from Saussurea involucrata Kar. et Kir. Plant Mol Biol 84:707–718

    Article  CAS  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  CAS  PubMed  Google Scholar 

  • Ruibal C, Salamó IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S (2012) Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. Plant Sci 190:89–102

    Article  CAS  PubMed  Google Scholar 

  • Santos AB, Mazzafera P (2012) Dehydrins are highly expressed in water-stressed plants of two coffee species. Tropical Plant Biol 5:218–232

    Article  CAS  Google Scholar 

  • Sun X, Lin HH (2010) Role of plant dehydrins in antioxidation mechanisms. Biologia 65:755–759

    Article  CAS  Google Scholar 

  • Svenson J, Ismail AM, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JM (eds) Sensing, signalling and cell adaptation. Elsevier Science, BV, pp 155–171

    Chapter  Google Scholar 

  • Szabala BM, Fudali S, Rorat T (2014) Accumulation of acidic SK3 dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae. Planta 239:847–863

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Wan HJ, Yuan W, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophy Res Co 416:24–30

    Article  CAS  Google Scholar 

  • Wang JE, Liu KK, Li DW, Zhang YL, Zhao Q, He YM, Gong ZH (2013) A novel peroxidase CanPOD gene of pepper is involved in defense responses to Phytophthora capsici infection as well as abiotic stress tolerance. Int J Mol Sci 14:3158–3177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welin BV, Olson A, Nylander M, Palva ET (1994) Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 26:131–144

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski ME, Bassett CL, Renaut J, Farrell R, Tworkoski T, Artlip TS (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance, to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Li JM, Yu F, Cong L, Wang LY, Burkard G, Chai TY (2006) Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol 32:205–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported through funding from the National Natural Science Foundation of China (#31201615, #31272163), Jiangsu Agriculture Science and Technology Innovation Fund [CX(12)1004], the Natural Science Foundation of Shaanxi Province (#2011JQ3010), the Shaanxi Provincial Science and Technology Coordinating Innovative Engineering Project (#2012KTCL02-09), and the Northwest A&F University Cyrus Tang Seed Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru-gang Chen or Zhen-Hui Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Dhingra.

Ru-gang Chen, Hua Jing, Wei-li Guo and Shu-Bin Wang are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Rg., Jing, H., Guo, Wl. et al. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L.. Plant Cell Rep 34, 2189–2200 (2015). https://doi.org/10.1007/s00299-015-1862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1862-1

Keywords

Navigation