Skip to main content
Log in

Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

In this study, we identified eight DNA MTase genes in maize and the diversity of expression patterns of them was presented by EST mining, microarray and semi-quantitative expression profile analyses.

Abstract

DNA methylation plays a pivotal role in promoting genomic stability through diverse biological processes including regulation of gene expression during development and chromatin organization. Although this important biological process is mainly regulated by several conserved Cytosine-5 DNA methyltransferases encoded by a smaller multigene family in plants, investigation of the plant C5-MTase-encoding gene family will serve to elucidate the epigenetic mechanism diversity in plants. Recently, genome-wide identification and evolutionary analyses of the C5-MTase-encoding gene family have been characterized in multiple plant species including Arabidopsis, rice, carrot and wheat. However, little is known regarding the C5-MTase-encoding genes in the entire maize genome. Here, genome-wide identification and expression profile analyses of maize C5-MTase-encoding genes (ZmMETs) were performed from the latest version of the maize (B73) genome. Phylogenetic analysis indicated that the orthologs from the three species (maize, Arabidopsis and rice) were categorized into four classes. Chromosomal location of these genes revealed that they are unevenly distributed on 6 of all 10 chromosomes with three chromosomal/segmental duplication events, suggesting that gene duplication played a key role in expansion of the maize C5-MTase-encoding gene family. Furthermore, EST expression data mining, microarray data and semi-quantitative expression profile analyses detected in the leaves by two different abiotic stress treatments have demonstrated that these genes had temporal and spatial expression pattern and exhibited different expression levels in stress treatments, suggesting that functional diversification of ZmMET genes family. Overall, our study will serve to present signification insights to explore the plant C5-MTase-encoding gene expression and function and also be beneficial for future experimental research to further unravel the mechanisms of epigenetic regulation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    CAS  PubMed  Google Scholar 

  • Bartee L, Bender J (2001) Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family. Nucleic Acids Res 29(10):2127–2134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernacchia G, Primo A, Giorgetti L, Pitto L, Cella R (1998) Carrot DNA methyltransferase is encoded by two classes of genes with differing patterns of expression. Plant J 13(3):317–329

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH, Verdine GL (1994) DNA methyltransferases Curr Opin Cell Biol 6(3):380–389

    Article  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16(7):1679–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Springer NM, Muszynski MG et al (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci 97(9):4979–4984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol 13(24):2212–2217

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci 52(4):331–343

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Ni Z, Dai J, Zhao T, Sun Q (2005) Isolation and expression analysis of genes encoding DNA methyltransferase in wheat (Triticum aestivum L.). Biochim Biophys Acta 1729(2):118–125

    Article  CAS  PubMed  Google Scholar 

  • Deleris A, Stroud H, Bernatavichute Y et al (2012) Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genet 8(11):e1003062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finnegan EJ, Dennis ES (1993) Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res 21:2383–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93(16):8449–8454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49(1):223–247

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of drosophila, nematode, and yeast. Mol Biol Evol 19:256–262

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch A (2006) Molecular enzymology of mammalian DNA methyltransferases. Curr Top Microbiol Immunol 301:203–225

    CAS  PubMed  Google Scholar 

  • Kakutani T (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 43(10):1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG, Lisch D (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22(1):1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlopoulou A, Kossida S (2007) Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution. Genomics 90(4):530–541

    Article  CAS  PubMed  Google Scholar 

  • Pósfai J, Bhagwat AS, Pósfai G, Roberts RJ (1989) Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17(7):2421–2435

    Article  PubMed Central  PubMed  Google Scholar 

  • Qian YX, Cheng Y, Cheng X, Jiang HY, Zhu SW, Cheng BJ (2011) Identification and characterization of Dicer-like, argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Rep 30:1347–1363

    Article  CAS  PubMed  Google Scholar 

  • Qian YX, Xi YL, Cheng BJ, Zhu SW, Kan XZ (2014) Identification and characterization of the SET domain gene family in maize. Mol Biol Rep 41:1341–1354

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM (2011) Genome-wide atlas of transcription during maize development. Plant J 66:553–563

    Article  CAS  PubMed  Google Scholar 

  • Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28(17):3250–3259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teerawanichpan P, Chandrasekharan MB, Jiang Y, Narangajavana J, Hall TC (2004) Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta 218(3):337–349

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Elling AA, Li X et al (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21(4):1053–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19:273–280

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang X, Yue J, Tian D, Chen J (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280:187–198

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Xie S, Dong X et al (2014) Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res 24(1):167–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JK (2008) Epigenome sequencing comes of age. Cell 133:395–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the China Postdoctoral Science Foundation (No. 2012M521212) and the Anhui Provincial Natural Science Foundation (No. 1308085MC44) and the Anhui Provincial University Natural Science Research Key Project (No. KJ2013A132) and the Anhui Postdoctoral Science Foundation. We wish to thank the anonymous reviewers for their helpful comments on this manuscript.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yexiong Qian.

Additional information

Communicated by Baochun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2,571 kb)

Supplementary material 2 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Xi, Y., Cheng, B. et al. Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize. Plant Cell Rep 33, 1661–1672 (2014). https://doi.org/10.1007/s00299-014-1645-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1645-0

Keywords

Navigation