Skip to main content

Advertisement

Log in

Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Genome-wide identification of grapevine NAC domain genes and investigation of their chromosome locations, gene structures, duplication, evolution, phylogeny and expression profiles.

Abstract

Grapevine is a widely used fruit crop. NAC (NAM, ATAF1/2 and CUC2) domain genes are plant-specific transcription factors (TFs) that comprise a conserved NAM domain in the N-terminus. Members of this gene family have been reported to contribute to plant development. During this study, 74 NAC genes were identified from 12× assembled grapevine genomic sequences. The duplication patterns, genomic structures and phylogeny of these 74 grapevine NAC genes were investigated. To understand the roles of VvNAC during grapevine development, their expression profiles in different tissues including leaf, tendril, inflorescence, stem, root and veraison berry skin were tested using quantitative real-time PCR. Analysis revealed expression diversity of various VvNAC genes among different grapevine tissues. To identify candidate grapevine NAC genes with a role in response to stress, publicly available microarray data were obtained to calculate their expression change under abiotic and biotic treatments, with a number of VvNAC genes displaying up-regulation after stress induction. Therefore, this study has uncovered more knowledge relating to the gene structures, chromosome organizations, evolution, expression profiles and functions of VvNAC genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinforma 9:465

    Article  Google Scholar 

  • Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M (2012) Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol 53(4):659–672

    Article  PubMed  CAS  Google Scholar 

  • Carviel JL, Al-Daoud F, Neumann M, Mohammad A, Provart NJ, Moeder W, Yoshioka K, Cameron RK (2009) Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol Plant Pathol 10(5):621–634

    Article  PubMed  CAS  Google Scholar 

  • Chung PJ, Kim JK (2009) Epigenetic interaction of OsHDAC1 with the OsNAC6 gene promoter regulates rice root growth. Plant Signal Behav 4(7):675–677

    Article  PubMed  CAS  Google Scholar 

  • Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2011) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40(Database issue):D1194–D1201

    PubMed  Google Scholar 

  • Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Merillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140(2):499–511

    Article  PubMed  CAS  Google Scholar 

  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50(2):237–248

    Article  PubMed  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183(3):557–564

    Article  PubMed  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46(4):601–612

    Article  PubMed  CAS  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) [GSDS: a gene structure display server]. Yi Chuan 29(8):1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Park CM (2007) Membrane-mediated salt stress signaling in flowering time control. Plant Signal Behav 2(6):517–518

    Article  PubMed  Google Scholar 

  • Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35(1):203–213

    Article  PubMed  CAS  Google Scholar 

  • Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50(6):1035–1048

    Article  PubMed  CAS  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18(4):263–276

    Article  PubMed  CAS  Google Scholar 

  • Matus JT, Poupin MJ, Canon P, Bordeu E, Alcalde JA, Arce-Johnson P (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol 72(6):607–620

    Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8(11):1113–1130

    PubMed  CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  PubMed  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80(2):135–139

    Article  PubMed  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247

    Article  PubMed  CAS  Google Scholar 

  • Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinforma 8:42

    Article  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128(7):1127–1135

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT (2009) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 281(6):647–664

    Article  PubMed  CAS  Google Scholar 

  • Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MA, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15(7):1563–1577

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact 22(10):1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang X, Tang H, Tan X, Ficklin SP, Feltus FA, Paterson AH (2011) Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS ONE 6(12):e28150

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res

  • Zhao C, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53(3):425–436

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Nevo E, Sun D, Peng J (2012a) Phylogenetic analyses unravel the evolutionary history of Nac proteins in plants. Evolution 66(6):1833–1848

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Shi J, He M, Cao J, Wang Y (2012b) Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata. Biotechnol Lett 34(7):1335–1342

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Natural Science Foundation of China (NSFC Accession No.: 31171931 and 31130047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian Wang or Shaohua Li.

Additional information

Communicated by H. Judelson.

N. Wang and Y. Zheng contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Zheng, Y., Xin, H. et al. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera . Plant Cell Rep 32, 61–75 (2013). https://doi.org/10.1007/s00299-012-1340-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1340-y

Keywords

Navigation