Skip to main content

Advertisement

Log in

Cassava: constraints to production and the transfer of biotechnology to African laboratories

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative advances in agriculture and industry, offering new prospects to promote the integration and dissemination of improved crops and their derivatives from developing countries into local markets and the global economy. There is also the need to broaden our knowledge and understanding of cassava as a staple food crop. Cassava (Manihot esculenta Crantz) is a vital source of calories for approximately 500 million people living in developing countries. Unfortunately, it is subject to numerous biotic and abiotic stresses that impact on production, consumption, marketability and also local and country economics. To date, improvements to cassava have been led via conventional plant breeding programmes, but with advances in molecular-assisted breeding and plant biotechnology new tools are being developed to hasten the generation of improved farmer-preferred cultivars. In this review, we report on the current constraints to cassava production and knowledge acquisition in Africa, including a case study discussing the opportunities and challenges of a technology transfer programme established between the Mikocheni Agricultural Research Institute in Tanzania and Europe-based researchers. The establishment of cassava biotechnology platform(s) should promote research capabilities in African institutions and allow scientists autonomy to adapt cassava to suit local agro-ecosystems, ultimately serving to develop a sustainable biotechnology infrastructure in African countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akano AO, Dixon AGO, Mba C, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet 105:521–525

    Article  PubMed  CAS  Google Scholar 

  • Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4:638–649

    Article  PubMed  CAS  Google Scholar 

  • Anderson JV, Delseny M, Fregene MA, Jorge V, Mba C, Lopez C, Restrepo S, Soto M, Piegu B, Verdier V, Cooke R, Tohme J, Horvath DP (2004) An EST resource for cassava and other species of Euphorbiaceae. Plant Mol Biol 56:527–539

    Article  PubMed  Google Scholar 

  • Averre CW (1967) Vascular streaking of stored cassava roots. In: Proceedings 1st international symposium tropical root crops, Trinidad, pp 31–35

  • Baba AI, Nogueira FCS, Pinheiro CB, Brasil JN, Jereissati ES, Jucá TL, Soares AA, Santos MF, Domont GB, Campos FAP (2008) Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Sci 175:717–723

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  • Barceloux DG (2009) Cyanogenic foods (cassava, fruit kernels, and cycad seeds). Dis Mon 55:336–352

    Article  PubMed  Google Scholar 

  • Beddington J (2009) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B: 365:61–71

    Article  Google Scholar 

  • Beltrán J, Prías M, Al-Babili S, Ladino Y, López D, Beyer P, Chavarriaga P, Tohme J (2010) Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz). Planta 231:1413–1424

    Article  PubMed  Google Scholar 

  • Berrie LC, Rybicki EP, Rey MEC (2001) Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst begomoviruses. J Gen Virol 82:53–58

    PubMed  CAS  Google Scholar 

  • Blagbrough IS, Bayoumi SAL, Rowan MG, Beeching JR (2010) Cassava: an appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry 71:1940–1951

    Article  PubMed  CAS  Google Scholar 

  • Boher B, Verdier V (1994) Cassava bacterial blight in Africa: the state of knowledge and implications for designing control strategies. Afr Crop Sci J 2:505–509

    Google Scholar 

  • Brink JA, Woodward BR, Da Silva EJ (1998) Plant biotechnology: a tool for development in Africa. Electron J Biotechnol 1:1–12

    Article  Google Scholar 

  • Bull SE, Karakacha HW, Briddon RW, Nzioki S, Maruthi MN, Stanley J, Winter S (2003) Occurrence of East African cassava mosaic Zanzibar virus (EACMZV) in coastal Kenya. Plant Pathol 52:791

    Article  Google Scholar 

  • Bull SE, Briddon RW, Sserubombwe WS, Ngugi K, Markham PG, Stanley J (2006) Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. J Gen Virol 87:3053–3065

    Article  PubMed  CAS  Google Scholar 

  • Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4:1845–1854

    Article  PubMed  CAS  Google Scholar 

  • Buschmann H, Rodriguez MX, Tohme J, Beeching JR (2000) Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann Bot 86:1153–1160

    Article  CAS  Google Scholar 

  • Ceballos H, Iglesias CA, Perez JC, Dixon AG (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516

    Article  PubMed  CAS  Google Scholar 

  • Ceballos H, Sanchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Perez JC, Calle F, Mestres C (2007) Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 55:7469–7476

    Article  PubMed  CAS  Google Scholar 

  • Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133

    Article  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI (2005) Poorer nations turn to publicly developed GM crops. Nat Biotechnol 23:27–33

    Article  PubMed  CAS  Google Scholar 

  • Delmer DP (2005) Agriculture in the developing world: Connecting innovations in plant research to downstream applications. Proc Natl Acad Sci USA 102:15739–15746

    Article  PubMed  CAS  Google Scholar 

  • Drummond OA (1953) Da etiologia de rajas pretas das raizes de Mandioca. Anais de Congresso Nacional da Sociedade Botanica do Brasil 57:60

    Google Scholar 

  • El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy MA (2006) International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 44:481–512

    Article  CAS  Google Scholar 

  • FAO (2008a) Cassava for food and energy security. FAO Media Centre, Rome. http://www.fao.org/newsroom/en/news/2008/1000899/index.html. Accessed Oct 2010

  • FAO (2008b) FAOSTAT. FAO, Rome. http://faostat.fao.org/. Accessed Oct 2010

  • Fermont AM, van Asten PJA, Tittonell P, van Wijk MT, Giller KE (2009) Closing the cassava yield gap: an analysis from smallholder farms in East Africa. Field Crops Res 112:24–36

    Article  Google Scholar 

  • Fermont AM, Babirye A, Obiero HM, Abele S, Giller KE (2010) False beliefs on the socio-economic drivers of cassava cropping. Agron Sustain Dev 30:433–444

    Article  Google Scholar 

  • González AE, Schöpke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17:827–831

    Article  Google Scholar 

  • Gopo J, Kimeri-Mbote P (2005) Biotechnology: a turning point in development or an opportunity that will be missed? In: Melendez-Ortiz R, Sanchez V (eds) Trading in genes: development perspectives on biotechnology, trade and sustainability. Earthscan, London

    Google Scholar 

  • Hahn SK, Terry ER, Leuschner K (1980) Breeding cassava for resistance to cassava mosaic disease. Euphytica 29:673–683

    Article  Google Scholar 

  • Hankoua BB, Taylor NJ, Ng SYC, Fawole I, Puonti-Kaerlas J, Padmanabhan C, Yadav JS, Fauquet C, Dixon AGO, Fondong VN (2006) Production of the first transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos. Afr J Biotechnol 5:1700–1712

    CAS  Google Scholar 

  • Hillocks RJ, Jennings DL (2003) Cassava brown streak disease: a review of present knowledge and research needs. Int J Pest Manag 49:225–234

    Article  Google Scholar 

  • Hillocks RJ, Raya MD, Mtunda K, Kiozia H (2001) Effects of brown streak virus disease on yield and quality of cassava in Tanzania. J Phytopathol 149:389–394

    Article  Google Scholar 

  • Hong YG, Robinson DJ, Harrison BD (1993) Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted geminiviruses in cassava. J Gen Virol 74:2437–2443

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Bachem C, Jacobsen E, Visser RGF (2001) Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots. Euphytica 120:85–93

    Article  CAS  Google Scholar 

  • Ihemere U, Arias-Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4:453–465

    Article  PubMed  CAS  Google Scholar 

  • James C (2009) Global status of commercialized biotech/GM crops. ISAAA, Ithaca

    Google Scholar 

  • Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Møller BL (2005) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol 139:363–374

    Article  PubMed  Google Scholar 

  • Kamalu BP (1995) The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption. Int J Food Sci Nutr 46:65–93

    Article  PubMed  CAS  Google Scholar 

  • Kawano K (2003) Thirty years of cassava breeding for productivity—biological and social factors for success. Crop Sci 43:1325–1335

    Article  Google Scholar 

  • Léotard G, Duputié A, Kjellberg F, Douzery EJP, Debain C, de Granville J-J, McKey D (2009) Phylogeography and the origin of cassava: new insights from the northern rim of the Amazonian basin. Mol Phylogenet Evol 53:329–334

    Article  PubMed  Google Scholar 

  • Lewis CP, Newell JN, Herron CM, Nawabu H (2010) Tanzanian farmers’ knowledge and attitudes to GM biotechnology and the potential use of GM crops to provide improved levels of food security. A qualitative study. BMC Public Health 10:1–10

    Article  PubMed  Google Scholar 

  • Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14:736–740

    Article  PubMed  CAS  Google Scholar 

  • Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AGO, Ingelbrecht IL (2007) Characterisation of an 18, 166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    Article  PubMed  CAS  Google Scholar 

  • Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F, Kyamanywa S, Kullaya A, Valkonen JPT (2010) Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. J Virol Methods (in press)

  • Montagnac JA, Davis CR, Tanumihardjo S (2009a) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Safety 8:181–194

    Article  CAS  Google Scholar 

  • Montagnac JA, Davis CR, Tanumihardjo S (2009b) Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Compr Rev Food Sci Food Safety 8:17–27

    Article  CAS  Google Scholar 

  • Morante N, Sánchez T, Ceballos H, Calle F, Pérez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chávez AL, Fregene M (2010) Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci 50:1333–1338

    Article  Google Scholar 

  • Nassar NMA (2008) Cassava genetic resources and their utilization for breeding of the crop. Genet Mol Res 6:1151–1168

    Google Scholar 

  • Nassar N, Ortiz R (2010) Breeding cassava to feed the poor. Sci Am 302:78–84

    Article  PubMed  Google Scholar 

  • Okogbenin E, Porto MCM, Egesi C, Mba C, Espinosa E, Santos LG, Ospina C, Marín J, Barrera E, Gutiérrez J, Ekanayake I, Iglesias C, Fregene MA (2007) Marker-assisted introgression of resistance to cassava mosaic disease into Latin American germplasm for the genetic improvement of cassava in Africa. Crop Sci 47:1895–1904

    Article  Google Scholar 

  • Olsen KM, Schaal BA (2007) Insights on the evolution of a vegetatively propagated crop species. Mol Ecol 16:2838–2840

    Article  PubMed  Google Scholar 

  • Patil BL, Fauquet CM (2009) Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol Plant Pathol 10:685–701

    Article  PubMed  CAS  Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China—the benefits continue. Plant J 31:423–430

    Article  PubMed  CAS  Google Scholar 

  • Raemakers CJJM, Sofiari E, Jacobsen E, Visser RGF (1997) Regeneration and transformation of cassava. Euphytica 96:153–161

    Article  Google Scholar 

  • Raemakers K, Schreuder M, Pereira I, Munyikwa T, Jacobsen E, Visser R (2001) Progress made in FEC transformation of cassava. Euphytica 120:15–24

    Article  CAS  Google Scholar 

  • Raemakers K, Schreuder M, Suurs L, Furrer-Verhorst H, Vincken J-P, de Vetten N, Jacobsen E, Visser RGF (2005) Improved cassava starch by antisense inhibition of granule-bound starch synthase I. Mol Breed 16:163–172

    Article  CAS  Google Scholar 

  • Raney T (2006) Economic impact of transgenic crops in developing countries. Curr Opin Biotechnol 17:174–178

    PubMed  CAS  Google Scholar 

  • Reilly K, Gomez-Vasquez R, Buschmann H, Tohme J, Beeching JR (2004) Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Mol Biol 56:625–641

    Article  PubMed  CAS  Google Scholar 

  • Reilly K, Bernal D, Cortés DF, Gómez-Vásquez R, Tohme J, Beeching JR (2007) Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64:187–203

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM (2010) Barriers and paths to market for genetically engineered crops. Plant Biotechnol J 8:101–111

    Article  PubMed  Google Scholar 

  • Rudi N, Norton GW, Alwang J, Asumugha G (2010) Economic impact analysis of marker-assisted breeding for resistance to pests and post-harvest deterioration in cassava. Afr J Agric Resour Econ 4:110–122

    Google Scholar 

  • Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66

    Article  PubMed  Google Scholar 

  • Schmitz PM, Kavallari A (2009) Crop plants versus energy plants-on the international food crisis. Bioorg Med Chem 17:4020–4021

    Article  PubMed  CAS  Google Scholar 

  • Schöpke C, Taylor N, Carcamo R, Konan NK, Marmey P, Henshaw GG, Beachy RN, Fauquet C (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotechnol 14:731–735

    Article  PubMed  Google Scholar 

  • Schreuder MM, Raemakers CJJM, Jacobsen E, Visser RGF (2001) Efficient production of transgenic plants by Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz). Euphytica 120:35–45

    Article  CAS  Google Scholar 

  • Skovgård H, Tomkiewicz J, Nachman G, Münster-Swendsen M (1993) The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta in a seasonally dry area in Kenya. Exp Appl Acarol 17:41–58

    Google Scholar 

  • Sseruwagi P, Sserubombwe WS, Legg JP, Ndunguru J, Thresh JM (2004) Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: a review. Virus Res 100:129–142

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Gay MG (1983) Nucleotide sequence of cassava latent virus DNA. Nature 301:260–262

    Article  CAS  Google Scholar 

  • Sundaresan S, Nambisan B, Easwari Amma CS (1987) Bitterness in cassava in relation to cyanoglucoside content. Indian J Agric Sci 57:37–40

    CAS  Google Scholar 

  • Taylor NJ, Edwards M, Kiernan RJ, Davey CD, Blakesley D, Henshaw GG (1996) Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nat Biotechnol 14:726–730

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA (2007) The role of biotechnology for agricultural sustainability in Africa. Philos Trans R Soc Lond B 363:905–913

    Article  Google Scholar 

  • Thresh JM, Fargette D, Otim-Nape GW (1994) Effects of African cassava mosaic geminivirus on the yield of cassava. Trop Science 34:26–42

    Google Scholar 

  • Thresh JM, Otim-Nape GW, Legg JP, Fargette D (1997) African cassava mosaic virus disease: the magnitude of the problem. Afri J Root Tuber Crops 2:13–19

    Google Scholar 

  • UN (2010) Millennium development goals. UN Department of Public Information, Rome. http://www.un.org/millenniumgoals. Accessed Oct 2010

  • Vanderschuren H, Akbergenov R, Pooggin MM, Hohn T, Gruissem W, Zhang P (2007) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64:549–557

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272

    Article  PubMed  CAS  Google Scholar 

  • Wekundah J (2003) Capacity building in biotechnology. United Nations Industrial Development Organisation, Global Biotechnology Forum, African Regional Consultative Meeting, Nairobi

    Google Scholar 

  • Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  PubMed  CAS  Google Scholar 

  • Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereitt A (2010) Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in East Africa. J Gen Virol 91:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Gruissem W (2004) Production of transgenic cassava (Manihot esculenta Crantz). In: Curtis IS (ed) Transgenic crops of the world—essential protocols. Kluwer Academic Publishers, Dordrecht, pp 301–319

    Google Scholar 

  • Zhang P, Potrykus I, Puonti-Kaerlas J (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res 9:405–415

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Jaynes JM, Potrykus I, Gruissem W, Puonti-Kaerlas J (2003a) Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculenta Crantz). Transgenic Res 12:243–250

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W (2003b) Two cassava promoters related to vascular expression and storage root formation. Planta 218:192–203

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Vanderschuren H, Fütterer J, Gruissem W (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3:385–397

    Article  PubMed  Google Scholar 

  • Zhang P, Wang W-Q, Zhang G-L, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52:653–669

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The KTTP based in MARI, Tanzania, is supported by the Bill & Melinda Gates Foundation. Authors sincerely thank Martin Fregene (Donald Danforth Plant Science Centre, U.S.A.) for initiating and supporting the project. Evangelista Chiunga, Christina Kidule, Joel Erasto and Fred Tairo are acknowledged for their dedication at MARI, Tanzania. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Vanderschuren.

Additional information

Communicated by R. Reski.

A contribution to the Special Issue: Plant Biotechnology in Support of the Millennium Development Goals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bull, S.E., Ndunguru, J., Gruissem, W. et al. Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Rep 30, 779–787 (2011). https://doi.org/10.1007/s00299-010-0986-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0986-6

Keywords

Navigation