Skip to main content
Log in

Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Lisianthus [Eustoma grandiflorum (Raf.) Shinn] is a popular cut flower crop throughout the world, and the demand for this plant for cut flowers and potted plants has been increasing worldwide. Recent advances in genetic engineering have enabled the transformation and regeneration of plants to become a powerful tool for improvement of lisianthus. We have established a highly efficient plant regeneration system and Agrobacterium-mediated genetic transformation of E. grandiflorum. The greatest shoot regeneration frequency and number of shoot buds per explant are observed on media supplemented with 6-Benzylaminopurine (BAP) and α-Naphthalene acetic acid (NAA). We report an efficient plant regeneration system using leaf explants via organogenesis with high efficiency of transgenic plants (15%) in culture of 11 weeks’ duration. Further ectopic expression of two MADS box genes, LMADS1-M from lily (Lilium longiflorum) and OMADS1 from orchid (Oncidium Gower Ramsey), was performed in E. grandiflorum. Conversion of second whorl petals into sepal-like structures and alteration of third whorl stamen formation were observed in the transgenic E. grandiflorum plants ectopically expressing 35S::LMADS1-M. 35S::OMADS1 transgenic E. grandiflorum plants flowered significantly earlier than non-transgenic plants. This is the first report on the ectopic expression of two MADS box genes in E. grandiflorum using a simple and highly efficient gene transfer protocol. Our results reveal the potential for floral modification in E. grandiflorum through genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

B5:

Gamborg

BAP:

6-Benzylaminopurine

CaMV:

Cauliflower mosaic virus

CIM:

Callus induction medium

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog

NAA:

α-Naphthalene acetic acid

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription-PCR

RIM:

Root induction medium

SIM:

Shoot induction medium

References

  • Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4:983–993

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44

    Article  PubMed  CAS  Google Scholar 

  • Aranovich D, Lewinsohn E, Zaccai M (2007) Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biol Technol 43(2):255–260

    Article  CAS  Google Scholar 

  • Clark DG (2004) Applications of plant biotechnology to ornamental crops. In: Christou P, Klee H (eds) Handbook of plant biotechnology, vol 2: applications of plant biotechnology in agriculture, the pharmaceutical industry, other industries. Wiley, London, pp 863–879

    Google Scholar 

  • Curtis IS, Power JB, Hedden P, Ward DA, Phillips A, Lowe KC, Davey MR (1999) A stable transformation system for the ornamental plant, Datura meteloides D.C. Plant Cell Rep 18:554–560

    Article  CAS  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  PubMed  CAS  Google Scholar 

  • Furukawa H, Matsubara C, Shigematsu N (1990) Shoot regeneration from the roots of prairie gentian [Eustoma grandiflorum (Griseb.) Schinners]. Plant Tissue Cult Lett 7:11–13

    Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrients requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Handa T (1992) Regeneration and characterization of prairie gentian (Eustoma grandiflorum) plant transformed by Agrobacterium rhizogenes. Plant Tissue Cult Lett 9:10–14

    Google Scholar 

  • Handa T (1996) Transformation of prairie gentian (Eustoma grandiflorum) with Agrobacterium rhizogenes harboring GUS and NPTII genes. J Jpn Soc Hort Sci 64(4):913–918

    Article  CAS  Google Scholar 

  • Hsu HF, Huang CH, Chou LH, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44:783–794

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALAE3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium mediated gene transfer. Plant Cell Rep 19:989–993

    Article  CAS  Google Scholar 

  • Kunitake H, Nakashima T, Mori K, Tanaka M, Mii M (1995) Plant regeneration from mesophyll protoplasts of lisianthus (Eustoma grandiflorum) by adding activated charcoal into protoplast culture medium. Plant Cell Tissue Organ Cult 43:59–65

    Article  Google Scholar 

  • Ledger SE, Deroles SC, Manson DG, Marie Bradley J, Given NK (1997) Transformation of lisianthus (Eustoma grandiflorum). Plant Cell Rep 16:853–858

    Article  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:475–497

    Article  Google Scholar 

  • Paek KY, Hahn EJ (2000) Cytokinins, auxins and activated charcoal affect organogenesis and anatomical characteristics of shoot-tip cultures of lisianthus (Eustoma grandiflorum (Raf.) Shinn). In Vitro Cell Dev Biol Plant 36:128–132

    Article  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994) Isolation of tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6:163–173

    Article  PubMed  CAS  Google Scholar 

  • Roh SM, Lawson RH (1988) Tissue culture in the improvement of Eustoma. Hortic Sci 23:658

    Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  PubMed  CAS  Google Scholar 

  • Ruffoni B, Damiano C, Massabo F, Esposito P (1990) Organogenesis and embryogenesis in Lisianthus russellianus Hook. Acta Hortic 280:83–87

    Google Scholar 

  • Semeria L, Vaira AM, Accotto GP, Allavena A (1995) Genetic transformation of Eustoma grandiflorum Griseb by microprojectile bombardment. Euphytica 85:125–130

    Article  Google Scholar 

  • Semeria L, Ruffoni B, Rabaglio M, Genga A, Vaira AM, Accotto GP, Allavena A (1996) Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 47:67–72

    Article  CAS  Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Nishihara M, Yamamura S, Nishizawa S, Irifune K, Morikawa H (1998) Stable transformation of Eustoma grandiflorum by particle bombardment. Plant Cell Rep 17:504–507

    Article  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Article  PubMed  CAS  Google Scholar 

  • Tzeng TY, Yang CH (2001) A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42(10):1156–1168

    Article  PubMed  CAS  Google Scholar 

  • Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis thaliana. Plant Physiol 133:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to C.-H. Y from the Council of Agriculture, Taiwan, ROC, grant number: 97AS-1.1.1-FD-Z1. This work was also supported by a 5Y/50B grant from the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hsien Yang.

Additional information

Communicated by M. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiruvengadam, M., Yang, CH. Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum . Plant Cell Rep 28, 1463–1473 (2009). https://doi.org/10.1007/s00299-009-0746-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0746-7

Keywords

Navigation