Skip to main content
Log in

A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The success of plant genetic transformation relies greatly on the strength and specificity of the promoters used to drive genes of interest. In this study, we analyzed gfp gene expression mediated by a polyubiquitin promoter (Gmubi) from soybean (Glycine max) in stably transformed soybean tissues. Strong GFP expression was observed in stably transformed proliferative embryogenic tissues. In whole transgenic plants, GFP expression was observed in root tips, main and lateral roots, cotyledons and plumules in young plants as well as in leaf veins, petioles, flower petals, pollen, pods and developing seeds in mature plants. GFP expression was localized mainly in epidermal cells, leaf mesophyll, procambium and vascular tissues. Introduction of an intron-less version of the Gmubi promoter (Gmupri) displayed almost the same GFP expression pattern albeit at lower intensities. The Gmubi promoter showed high levels of constitutive expression and represents an alternative to viral promoters for driving gene expression in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Battraw MJ, Hall TC (1990) Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15:527–538

    Article  PubMed  CAS  Google Scholar 

  • Binet MN, Lepetit M, Weil JH, Tessier LH (1990) Analysis of a sunflower polyubiquitin promoter by transient expression. Plant Sci 79:87–94

    Article  Google Scholar 

  • Buenrostro-Nava MT, Ling PP, Finer JJ (2006) Comparative analysis of 35S and lectin promoters in transgenic soybean tissue using and automated image acquisition system and image analysis. Plant Cell Rep 25:920–926

    Article  PubMed  CAS  Google Scholar 

  • Butaye K, Cammue B, Delauré S, De Bolle M (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana––structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    PubMed  CAS  Google Scholar 

  • Chiera JM, Finer JJ, Grabau EA (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

    Article  PubMed  CAS  Google Scholar 

  • Chiera JM, Streeter JG, Finer JJ (2006) Ononitol and pinitol production in transgenic soybean containing the inositol methyl transferase gene from Mesembryanthemum crystallinum. Plant Sci 171:647–654

    Article  CAS  Google Scholar 

  • Chiera JM, Bouchard RA, Dorsey SL, Park EH, Buenrostro-Nava MT, Ling PP, Finer JJ (2007) Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26:1501–1509

    Article  PubMed  CAS  Google Scholar 

  • Chiu W-L, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high levels of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Sequence analysis and transcriptional regulation by heat shock of polyubiquitin transcripts from maize. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Cornejo M-J, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  PubMed  CAS  Google Scholar 

  • De Bolle M, Butaye K, Coucke W, Goderis I, Wouters P, van Boxel N, Broekaert W, Cammue B (2003) Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci 165:169–179

    Article  Google Scholar 

  • Dennis AP, O’Malley BW (2005) Rush hour at the promoter: How the ubiquitin-proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J Steroid Biochem Mol Biol 93:139–151

    Article  PubMed  CAS  Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol Plant 27:175–182

    Article  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:232–238

    Article  Google Scholar 

  • Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Furtado A, Henry RJ, Takaiwa F (2008) Comparison of promoters in transgenic rice. Plant Biotech J 6:679–693

    Article  CAS  Google Scholar 

  • Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J (1994) Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene 148:195–202

    Article  PubMed  CAS  Google Scholar 

  • Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Kamo K, Blowers A, Smith F, Van Eck J, Lawson R (1995) Stable transformation of Gladiolus using suspension cells and callus. J Am Soc Hortic Sci 120:347–352

    Google Scholar 

  • Le Hir H, Moore MJ, Maquat LE (2000) Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 14:1098–1108

    PubMed  CAS  Google Scholar 

  • Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Liu ZB, Shi X, Hagen G, Guilfoyle TJ (1994) An auxin-inducible element in soybean SAUR promoters. Plant Physiol 106:37–43

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Sivamani E, Azhakanandam K, Samadder P, Li X, Qu R (2008) Gene expression enhancement mediated by the 5′ UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol Genet Genomics 279:563–572

    Article  PubMed  CAS  Google Scholar 

  • Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192–201

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nagatani N, Takumi S, Tomiyama M, Shimada T, Tamiya E (1997) Semi-real time imaging of the expression of a maize polyubiquitin promoter-GFP gene in transgenic rice. Plant Sci 124:49–56

    Article  CAS  Google Scholar 

  • Nott A, Le Hir H, Moore MJ (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18:210–222

    Article  PubMed  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  • Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi.u4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667

    Article  PubMed  CAS  Google Scholar 

  • Ponappa T, Brzozowski AE, Finer JJ (1999) Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein (GFP). Plant Cell Rep 19:6–12

    Article  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    CAS  Google Scholar 

  • Rollfinke IK, Silber MV, Pfitzner UM (1998) Characterization and expression of a heptaubiquitin gene from tomato. Gene 211:267–276

    Article  PubMed  CAS  Google Scholar 

  • Rooke L, Byrne D, Salgueiro S (2000) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann App Biol 136:167–172

    Article  CAS  Google Scholar 

  • Rose AB (2004) The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J 40:744–751

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol 22:535–542

    Article  Google Scholar 

  • Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Samadder P, Sivamani E, Lu J, Li X, Qu R (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 279:429–439

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Santarém ER, Finer JJ (1999) Transformation of soybean (Glycine max (L.) Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev Biol Plant 35:451–455

    Article  Google Scholar 

  • Sivamani E, Qu R (2006) Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol Biol 60:225–239

    Article  PubMed  CAS  Google Scholar 

  • Strömvik MV, Sundararaman VP, Vodkin LO (2004) A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs. Plant Mol Biol 41:217–231

    Article  Google Scholar 

  • Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4:948–958

    Article  PubMed  CAS  Google Scholar 

  • Takimoto I, Christensen AH, Quail PH, Uchimiya H, Toki S (1994) Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol Biol 26:1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  Google Scholar 

  • Vain P, Finer KR, Engler DE, Pratt RC, Finer JJ (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep 15:489–494

    Article  CAS  Google Scholar 

  • Waclawovsky AJ, Freitas RL, Rocha CS, Contim LAS, Fontes EPB (2006) Combinational regulation modules of GmSBP2 promoter: A distal cis-regulatory domain confines the SBP2 promoter activity to the vascular tissue in vegetative organs. Biochem Biophys Acta 1759:89–98

    PubMed  CAS  Google Scholar 

  • Wang J, Oard JH (2003) Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep 22:129–134

    Article  PubMed  CAS  Google Scholar 

  • Wei HR, Wang ML, More PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Chiera JM, Ling PP, Finer JJ (2008) Isoxaflutole treatment leads to reversible tissue bleaching and allows for more effective detection of GFP in transgenic soybean tissues. In Vitro Cell Dev Biol Plant 6:540–547

    Google Scholar 

  • Xia B-S, Waterhouse RN, Watanabe Y, Kajiwara H, Komatsu S, Hirano H (1994) Nucleotide sequence of a soybean (Glycine max L. Merr.) ubiquitin gene. Plant Physiol 104:805–806

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Carranco R, Vitha S, Hall TC (2005) The dark side of green fluorescent protein. New Phytol 168:313–322

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Cheri Nemes for generation of the transgenic events and plants and Dr. Tea Meulia (MCIC/OARDC/OSU) for the technical assistance during the confocal microscopy analysis. Salaries and research support were provided by the United Soybean Board, and by State and Federal funds appropriated to The Ohio State University/Ohio Agricultural Research and Development Center. This research was partially supported through fellowships from CAPES, Brazil, to APM and from CONACYT, Mexico, to CMHG. Mention of trademark or proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC and also does not imply approval to the exclusion of other products that may also be suitable. Journal Article No HCS 08–22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Finer.

Additional information

Communicated by M. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez-Garcia, C.M., Martinelli, A.P., Bouchard, R.A. et al. A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28, 837–849 (2009). https://doi.org/10.1007/s00299-009-0681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0681-7

Keywords

Navigation