Skip to main content
Log in

Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The tobacco cutworm (Spodoptera litura) is a polyphagous foliage insect and a major pest on peanut (Arachis hypogaea L.). S. litura is susceptible to the chimeric δ-endotoxin Cry1EC reported earlier. De-embryonated cotyledon explants of peanut were transformed using Agrobacterium tumefaciens strain EHA101 harboring a synthetic cry1EC gene driven by the CaMV 35S promoter. Transgenic plants of peanut with a single copy insertion of cry1EC were selected in the T0 generation by Southern blot hybridization. Real-time PCR, Western blot and ELISA analysis indicated that expression of the cry1EC gene was higher in single copy T1 plants. Immunoassay showed expression of Cry1EC up to 0.13% of total soluble protein in T1 plants. Leaf feeding bioassay on highly expressing transgenic lines showed 100% killing of larvae at the 2nd instar stage of S. litura. This is the first report of transgenic peanut plants with resistance to S. litura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

hptII :

Hygromycin phosphotransferase

SIM:

Shoot induction medium

References

  • Cheng M, Jarret RL, Li Z, Xing A, Demski JW (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657

    Article  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Van Montagu M, Depicker A (2001) Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Mol Biol 46:433–445

    Article  PubMed  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Ghewande MP, Desai S, Basu MS (2002a) Diagnosis and management of major diseases of groundnut. Bulletin, National Research Centre for Groundnut, Junagadh, India

    Google Scholar 

  • Ghewande MP, Nandagopal V, Desai S, Basu MS (2002b) Integrated pest management in groundnut. Bulletin, National Research Centre for Groundnut, Junagadh, India

    Google Scholar 

  • Harlow Ed, Lane D (1999) Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Hobbs SLA, Kpodar P, Delong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Jarret RL, Demski JW (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Res 6:297–305

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR & the 2−ΔΔC T method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  PubMed  CAS  Google Scholar 

  • McKently AH, Moore GA, Doostdar H, Niedz RP (1995) Agrobacterium-mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants. Plant Cell Rep 14:699–703

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naimov S, Dukiandjiev S, Maagd RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotech J 1:51–57

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledon-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Prasad MNR, Gowda MVC (2006) Mechanisms of resistance to tobacco cutworm (Spodoptera litura F.) and their implications to screening for resistance in groundnut. Euphytica 149:387–399

    Article  CAS  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Ann Rev Entomol 47:845–881

    Article  CAS  Google Scholar 

  • Singh K, Raizada J, Bhardwaj P, Ghawana S, Rani A, Singh H, Kumar S (2004a) 26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species. Anal Biochem 335:330–333

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Kumar M, Chaturvedi CP, Yadav D, Tuli R (2004b) Development of a hybrid δ-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Transgenic Res 13:397–410

    Article  PubMed  CAS  Google Scholar 

  • Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cry1A(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6:169–176

    Article  PubMed  CAS  Google Scholar 

  • Srinivasa Reddy MS, Dinkins RD, Glenn B, Collins GB (2003) Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 21:676–683

    Google Scholar 

  • Stalker HT, Moss JP (1987) Speciation cytogenetics, and utilization of Arachis species. Adv Agron 41:1–40

    Article  Google Scholar 

  • Stewart Jr CN, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA (1996) Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112:121–129

    Article  PubMed  CAS  Google Scholar 

  • Surekha Ch, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupta A, Kirti PB (2005) Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080

    Article  CAS  Google Scholar 

  • Tiwari S, Tuli R (2008) Factors promoting efficient in vitro regeneration from de-embryonated cotyledon explants of Arachis hypogaea L. Plant Cell Tissue Organ Cult 92:15–24

    Article  Google Scholar 

  • Yang H, Singsit C, Wang A, Gonsalves D, Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep 17:693–699

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. K. Chandrasekhar and S. M. H. Abidi for insect bioassays, Council of Scientific and Industrial Research, Government of India for financial support and fellowship to Siddharth Tiwari, Devesh K. Mishra and Ankit Singh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Tuli.

Additional information

Communicated by P. Ozias-Akins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (doc 23 kb)

ESM2 (ppt 322 kb)

299_2008_525_MOESM3_ESM.doc

Table 1S Quantification of cry1EC transcript by real-time PCR. The amplification plots shown in Fig. 2S were used to calculate 2-DDCT values for the five transgenic lines. The results given in the last column are presented graphically in Fig. 4 in the manuscript (doc 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Mishra, D.K., Singh, A. et al. Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27, 1017–1025 (2008). https://doi.org/10.1007/s00299-008-0525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0525-x

Keywords

Navigation