Skip to main content
Log in

Creation and analysis of a novel chimeric promoter for the complete containment of pollen- and seed-mediated gene flow

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Effective containment of gene flow in transgenic plants requires a promoter that is highly specific for male and female gametes or tissues. Here, we report the creation of a novel pollen-, stigma- and carpel-specific (PSC) promoter through the fusion of the pollen-specific LAT52 and carpel-specific AGL5 enhancers to a stigma-specific SLG promoter. Gene expression analysis showed that fusion of the LAT52 enhancer to the SLG promoter enables the latter to gain pollen-specific activity while the acquirement of carpel-specific activity requires the correct orientation of the inserted AGL5 enhancer in the PSC promoter, and only a forward- but not a reverse-oriented one is functional. The resulting fPSC promoter, when fused to DT-A, generated at least three aberrant gynoecium phenotypes. Type I plants exhibited shortened stigmatic tissues, resembling plants containing the DT-A gene controlled by the SLG promoter. However, type II and III plants displayed partial or complete ablation of gynoecia, and were unable to support the reproductive process. Type II and III plants also produced severely perturbed anthers and pollen in comparison to type I or SLG::DT-A plants, and transgenic pollen grains were unable, when out-crossed with control plants, to pass the transgene to the next generation in all plants examined, indicating that they are selectively eliminated. This tissue-specific ablation or perturbation is highly specific, and does not compromise vegetative growth. Evidently, the fPSC promoter faithfully acquires tissue specificity from the incorporated enhancers and promoter, and should have a practical application for transgene containment in non-fruit and -grain producing plant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Ahmad H, Galili S, Gressel J (2004) Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol Ecol 13:697–710

    Article  PubMed  CAS  Google Scholar 

  • Avni A, Edelman M (1991) Direct selection for paternal inheritance of chloroplasts in sexual progeny of Nicotiana. Mol Gen Genet 225:273–277

    Article  PubMed  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Beals TP, Goldburg RB (1997) A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9:1527–1545

    Article  PubMed  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Block M, Debrouwer D (1993) Engineered fertility control in transgenic Brassica napus L: histochemical analysis of anther development. Planta 189:218–225

    Article  Google Scholar 

  • Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat: expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jeng T, Palys JM, Tang K, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral Dip: a simple method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Collins C, Azmi P, Berru M, Zhu X, Shulman MJ (2006) A weakened transcriptional enhancer yields variegated gene expression. PLoS One 1:e33

    Article  PubMed  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  PubMed  CAS  Google Scholar 

  • Dwyer KG, Kandasamy MK, Mahosky DI, Acciai J, Kudish BI, Miller JE, Nasrallah ME, Nasrallah JB (1994) A superfamily of S locus-related sequences in Arabidopsis: diverse structures and expression patterns. Plant Cell 6:1829–1843

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Flanagan CA, Hu Y, Ma H (1996) Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J 10:343–353

    Article  PubMed  CAS  Google Scholar 

  • Gasser CS, Budelier KA, Smith AG, Shah DM, Fraley RT (1989) Isolation of tissue-specific cDNA from tomato pistils. Plant Cell 1:15–24

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Design of safe and biologically contained transgenic plants: tools and technologies for controlled transgene flow and expression. Biotechnol Genet Eng Rev 21:325–367

    PubMed  Google Scholar 

  • Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17:361–366

    Article  PubMed  CAS  Google Scholar 

  • Hall L, Topinka K, Huffman J, Davis L, Allen A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688–694

    Article  CAS  Google Scholar 

  • Hartley RW (1988) Barnase and Barstar: expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R (1988) Plant reporter genes: the GUS gene fusion system. In: Setlow JK, Hollaender A (eds) Genetic engineering: principles and methods. Plenum Press, New York, pp 247–263

    Google Scholar 

  • Kandasamy MK, Thorsness MK, Rundle SJ, Goldberg ML, Nasrallah JB, Nasrallah ME (1993) Ablation of papillar cell function in Brassica flowers results in the loss of stigma receptivity to pollination. Plant Cell 5:263–275

    Article  PubMed  CAS  Google Scholar 

  • Keenan RJ, Stemmer WPC (2002) Nontransgenic crops from transgenic plants. Nat Biotechnol 20:215–216

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibioyic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Munemura I, Hinata K, Yamamura S (2006) Bisexual sterility conferred by the differential expression of Barnase and Barstar: a simple and efficient method of transgene containment. Plant Cell Rep 25:1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  PubMed  CAS  Google Scholar 

  • Kuvshinov V, Koivu K, Kanerva A, Pehu E (2001) Molecular control of transgene escape from genetically modified plants. Plant Sci 160:517–522

    Article  PubMed  CAS  Google Scholar 

  • Lännenpää M, Hassinen M, Ranki A, Holtta-Vuori M, Lemmetyinen J, Keinonen K, Sopanen T (2005a) Prevention of flower development in birth and other plants using a BpFULL1::BARNASE construct. Plant Cell Rep 24:69–78

    Article  PubMed  Google Scholar 

  • Lännenpää M, Parkkinen S, Järvinen P, Lemmetyinen J, Vepsäläinen S, Savola T, Keinonen K, Keinänen M, Sopanen T (2005b) The expression and promoter specificity of the birch homologs for PISTILLATA/GLOBOSA and APETALA3/DEFICIENS. Physiol Plant 125:268–280

    Article  Google Scholar 

  • Lee H-S, Huang S, Kao T-H (1994) S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560–563

    Article  PubMed  CAS  Google Scholar 

  • Lemmetyinen J, Keinonen K, Sopanen T (2004) Prevention of the flowering of a tree, silver birch. Mol Breed 13:243–249

    Article  CAS  Google Scholar 

  • Lemmetyinen J, Pennanen T, Lännenpää M, Sopanen T (2001) Prevention of flower formation in dicotyledons. Mol Breed 7:341–350

    Article  CAS  Google Scholar 

  • Li Y, Chang Z, Smith WA, Ellis DR, Chen Y, Zheng X, Pei Y, Luo K, Zhao D, Yao Q, Duan H, Li Q (2004) Invasive ornamental plants: problems, challenges, and molecular tools to neutralize their invasiveness. Crit Rev Plant Sci 23:381–389

    Article  Google Scholar 

  • Liu Z, Franks RG, Klink VP (2000) Regulation of marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12:1879–1892

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Steward CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) “GM-gene-deletor”: fused LoxP-FRT recognition sequences dramatically improve the efficiency of FLP or Cre recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, DeBeuckeleer M, Trueltner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Mariani C, Gossele V, Beuckeleer MD, Block MD, Goldburg RB, Greef WD, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Mikkelsen TR, Andersen B, Jorgensen RB (1996) The risk of crop transgene spread. Nature 380:31–31

    Article  CAS  Google Scholar 

  • Nasrallah JB, Nasrallah ME (1993) Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell 5:1325–1335

    Article  PubMed  Google Scholar 

  • Nasrallah JB, Yu S-M, Nasrallah ME (1988) Self-imcompatibility genes of Brassica oleracea: expression, isolation and structure. Proc Natl Acad Sci 85:5551–5555

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Wu E, Wolfe DS, Weigel D (1998) Genetic ablation of flowers in transgenic Arabidopsis. Plant J 15:799–804

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Behringer RR, Quaife CJ, Maxwell FM, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    Article  PubMed  CAS  Google Scholar 

  • Roeder AHK, Ferrandize C, Yanofsky MF (2003) The role of the REPLUMLESS homeodomain protein in pattering the Arabidopsis fruit. Curr Biol 13:1630–1635

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids—high-level foreign protein expression in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7:721–733

    Article  PubMed  CAS  Google Scholar 

  • Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Pupulus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Pupulus, Nicotiana and Arabidopsis. Mol Breed 12:119–132

    Article  CAS  Google Scholar 

  • Snow AA (2002) Transgenic crops—why gene flow matters. Nat Biotechnol 20:542–542

    Article  PubMed  CAS  Google Scholar 

  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: potential ecological risks. Bioscience 47:86–96

    Article  Google Scholar 

  • Thorsness MK, Kandasamy MK, Nasrallah ME, Nasrallah JB (1993) Genetic ablation of floral cells in Arabidopsis. Plant Cell 5:253–261

    Article  PubMed  CAS  Google Scholar 

  • Twell D (1995) Diphtheria toxin-mediated cell ablation in developing pollen: vegetative cell ablation blocks generative cell migration. Protoplasma 187:144–154

    Article  CAS  Google Scholar 

  • Wei H, Meilan R, Brunner AM, Skinner JS, Ma K, Gandhi HT, Strauss SH (2007) Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgene. Mol Breed 19:69–85

    Article  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang Z-Y, Xia J, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dennis Bennett and Lin Zhang for the help with generating transgenic plants, Dr. June Nasrallah for providing SLG13 promoter and Dr. Stacy Singer for critical reading of the manuscript. This work was supported by a grant from US Department of Agriculture (2006-03701) to ZL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongrang Liu or Keqiang Wu.

Additional information

Communicated by R. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zhou, C. & Wu, K. Creation and analysis of a novel chimeric promoter for the complete containment of pollen- and seed-mediated gene flow. Plant Cell Rep 27, 995–1004 (2008). https://doi.org/10.1007/s00299-008-0522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0522-0

Keywords

Navigation