Skip to main content

Advertisement

Log in

The IL-33 gene is related to increased susceptibility to systemic sclerosis

  • Original Article - Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is a chronic inflammatory disease characterized by widespread fibrosis of the skin and several visceral organs. The pro-fibrotic potential of interleukin (IL)-33 has been demonstrated by in both in vitro and in vivo settings; moreover, increased level of IL-33 has also been reported in patients with SSc. Therefore, the aim of the present study was to detect the potential association of IL-33 gene polymorphisms on the susceptibility of SSc. A total of 300 SSc patients and 280 healthy controls (HC) were enrolled in this multicentric preliminary candidate gene study. DNA samples were harvested using an appropriate commercial DNA isolation kit. Four single nucleotide polymorphisms (SNPs) of IL-33 gene (rs7044343, rs1157505, rs11792633 and rs1929992) were genotyped using the appropriate commercial primer/probe sets on real-time PCR. There was no significant difference in terms of the allelic distributions and minor allele frequencies of evaluated four IL-33 polymorphisms between the SSc and HC groups (P > 0.05 for all). Moreover, the genotypic distributions of rs1157505, rs11792633 and rs1929992 polymorphisms were not significantly different (P > 0.05 for all). However, CC genotype of rs7044343 SNP was significantly higher in the SSc group compared to the HC group (P = 0.013, OR 1.75, 95 % CI 1.12–2.72). This preliminary candidate gene study demonstrates that rs7044343 polymorphism of IL-33 gene is associated with the susceptibility to the SSc in Turkish population. It may be suggested that IL-33 gene may be a candidate gene to research in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenblatt MB, Aliprantis AO (2013) The immune pathogenesis of scleroderma: context is everything. Curr Rheumatol Rep 15:297

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fuschiotti P (2011) Role of IL-13 in systemic sclerosis. Cytokine 56:544–549

    Article  CAS  PubMed  Google Scholar 

  3. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    Article  CAS  PubMed  Google Scholar 

  4. Lécart S, Lecointe N, Subramaniam A, Alkan S, Ni D, Chen R, Boulay V, Pène J, Kuroiwa K, Tominaga S, Yssel H (2002) Activated, but not resting human Th2 cells, in contrast to Th1 and T regulatory cells, produce soluble ST2 and express low levels of ST2L at the cell surface. Eur J Immunol 32:2979–2987

    Article  PubMed  Google Scholar 

  5. Oboki K, Ohno T, Kajiwara N, Saito H, Nakae S (2010) IL-33 and IL-33 receptors in host defense and diseases. Allergol Int 59:143–160

    Article  CAS  PubMed  Google Scholar 

  6. Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY (2007) IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol 37:2779–2786

    Article  CAS  PubMed  Google Scholar 

  7. Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4(8):583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hasegawa M, Fujimoto M, Kikuchi K, Takehara K (1997) Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol 24(2):328–332

    CAS  PubMed  Google Scholar 

  9. Needleman BW, Wigley FM, Stair RW (1992) Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor alpha, and interferon-gamma levels in sera from patients with scleroderma. Arthritis Rheum 35:67–72

    Article  CAS  PubMed  Google Scholar 

  10. Mavalia C, Scaletti C, Romagnani P, Carossino AM, Pignone A, Emmi L, Pupilli C, Pizzolo G, Maggi E, Romagnani S (1997) Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol 151(6):1751–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rankin AL, Mumm JB, Murphy E, Turner S, Yu N, McClanahan TK, Bourne PA, Pierce RH, Kastelein R, Pflanz S (2010) IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol 184(3):1526–1535

    Article  CAS  PubMed  Google Scholar 

  12. Manetti M, Guiducci S, Ceccarelli C, Romano E, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M (2011) Increased circulating levels of interleukin 33 in systemic sclerosis correlate with early disease stage and microvascular involvement. Ann Rheum Dis 70(10):1876–1878

    Article  CAS  PubMed  Google Scholar 

  13. Yanaba K, Yoshizaki A, Asano Y, Kadono T, Sato S (2011) Serum IL-33 levels are raised in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. Clin Rheumatol 30(6):825–830

    Article  PubMed  Google Scholar 

  14. Terras S, Opitz E, Moritz RK, Höxtermann S, Gambichler T, Kreuter A (2013) Increased serum IL-33 levels may indicate vascular involvement in systemic sclerosis. Ann Rheum Dis 72(1):144–145

    Article  CAS  PubMed  Google Scholar 

  15. Englert H, Small-McMahon J, Chambers P, O’Connor H, Davis K, Manolios N, White R, Dracos G, Brooks P (1999) Familial risk estimation in systemic sclerosis. Aust N Z J Med 29(1):36–41

    Article  CAS  PubMed  Google Scholar 

  16. Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD (2001) Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum 44(6):1359–1362

    Article  CAS  PubMed  Google Scholar 

  17. Sakashita M, Yoshimoto T, Hirota T, Harada M, Okubo K, Osawa Y, Fujieda S, Nakamura Y, Yasuda K, Nakanishi K, Tamari M (2008) Association of serum interleukin-33 level and the interleukin-33 genetic variant with Japanese cedar pollinosis. Clin Exp Allergy 38:1875–1881

    Article  CAS  PubMed  Google Scholar 

  18. Chapuis J, Hot D, Hansmannel F, Kerdraon O, Ferreira S, Hubans C et al (2009) Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer’s disease. Mol Psychiatry 14:1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li C, Mu R, Guo J, Wu X, Tu X, Liu X, Hu F, Guo S, Zhu J, Xu H, Li Z (2014) Genetic variant in IL33 is associated with susceptibility to rheumatoid arthritis. Arthritis Res Ther 16(2):R105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fan D, Ding N, Yang T, Wu S, Liu S, Liu L, Hu Y, Duan Z, Xia G, Xu S, Xu J, Ding C, Pan F (2014) Single nucleotide polymorphisms of the interleukin-33 (IL-33) gene are associated with ankylosing spondylitis in Chinese individuals: a case–control pilot study. Scand J Rheumatol 43(5):374–379

    Article  CAS  PubMed  Google Scholar 

  21. Koca SS, Kara M, Deniz F, Ozgen M, Demir CF, Ilhan N, Isik A (2015) Serum IL-33 level and IL-33 gene polymorphisms in Behçet’s disease. Rheumatol Int 35(3):471–477

    Article  CAS  PubMed  Google Scholar 

  22. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A et al (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 65(11):2737–2747

    Article  PubMed  PubMed Central  Google Scholar 

  23. Valentini G, Della Rossa A, Bombardieri S, Bencivelli W, Silman AJ, D’Angelo S et al (2001) European multicentre study to define disease activity criteria for systemic sclerosis. II. Identification of disease activity variables and development of preliminary activity indexes. Ann Rheum Dis 60(6):592–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Medsger TA Jr, Silman AJ, Steen VD, Black CM, Akesson A, Bacon PA et al (1999) A disease severity scale for systemic sclerosis: development and testing. J Rheumatol 26(10):2159–2167

    PubMed  Google Scholar 

  25. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98

    Article  CAS  PubMed  Google Scholar 

  26. Krieg T, Abraham D, Lafyatis R (2007) Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Ther 9(Suppl 2):S4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Postlethwaite AE, Shigemitsu H, Kanangat S (2004) Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol 16:733–738

    Article  PubMed  Google Scholar 

  28. Van de Veerdonk FL, Netea MG (2013) New insights in the immunobiology of IL-1 family members. Front Immunol 4:167

    PubMed  PubMed Central  Google Scholar 

  29. Manetti M, Ibba-Manneschi L, Liakouli V, Guiducci S, Milia AF, Benelli G et al (2010) The IL1-like cytokine IL-33 and its receptor ST2 are abnormally espresse in the affected skin and visceral organs of patients with systemic sclerosis. Ann Rheum Dis 69:598–605

    Article  CAS  PubMed  Google Scholar 

  30. Chackarian AA, Oldham ER, Murphy EE, Schimtz J, Pflanz S, Kastelein RA et al (2007) IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol 179:2551–2555

    Article  Google Scholar 

  31. Luo H, Higuchi K, Matsumoto K, Mori M (2013) An interleukin-33 gene polymorphism is a modifier for eosinophilia in rats. Genes Immun 14(3):192–197

    Article  CAS  PubMed  Google Scholar 

  32. Martín JE, Bossini-Castillo L, Martín J (2012) Unraveling the genetic component of systemic sclerosis. Hum Genet 131(7):1023–1037

    Article  PubMed  Google Scholar 

  33. Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R et al (2010) Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 42(5):426–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allanore Y, Saad M, Dieudé P, Avouac J, Distler JH, Amouyel P et al (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7(7):e1002091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M et al (2011) Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7(7):e1002178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Serdar Koca.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koca, S.S., Pehlivan, Y., Kara, M. et al. The IL-33 gene is related to increased susceptibility to systemic sclerosis. Rheumatol Int 36, 579–584 (2016). https://doi.org/10.1007/s00296-015-3417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-015-3417-8

Keywords

Navigation