Skip to main content
Log in

A 14-bp stretch plays a critical role in regulating gene expression from β1-tubulin promoters of basidiomycetes

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2019

This article has been updated

Abstract

Cis-acting elements play a vital role in regulation of transcription initiation. Several cis-acting elements have been identified in filamentous fungi; however, the fundamental requirements for basic promoter function in basidiomycetes are obscure. In this study, core elements in β1-tubulin promoters of basidiomycetes were functionally characterized. Using transient transformation in Ceriporiopsis subvermispora as a promoter assay, we found that a 14-bp region (β1-tubulin core promoter element, BCE), as well as CT-rich stretch, in the β1-tubulin promoter of the species played a critical role in the expression of a recombinant hph as a reporter gene. In addition, in silico analysis revealed other members of basidiomycetes also harboured the BCE motif as well as CT-rich stretch in the β1-tubulin promoter region, suggesting their functional conservation among the species of basidiomycetes. To confirm the function of BCE, we investigated the effects of BCE motif deletion in the Pleurotus ostreatus β1-tubulin promoter on expression levels of a recombinant luminous shrimp luciferase reporter gene, which was targeted into the Pofcy1 locus. Intriguingly, luciferase activity was abolished when the BCE motif was deleted in the β1-tubulin promoter, strongly demonstrating its essential function in transcription from this promoter on the chromosome. This study clearly demonstrates the crucial role of the BCE as well as the CT-rich stretch regions in the β1-tubulin promoter among basidiomycetes and provides new insights into the fundamental mechanism of transcription initiation in this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 25 July 2019

    The original publication of this paper unfortunately contained three errors in Figs. 2B and 3. In Fig. 2B, the TSS site must be counted as “+ 1” instead of “− 1”. And we indicated wrong sequences in Fig. 3: the construct “Control” has a missing one “A” in the BCE sequence, and the reverse direction of BCE sequence in the construct “BCEr” must be “GCGGAGTTTCAATT”, not “CGCCTCAAGTTAA”. For the reasons stated herein, the authors wish to notify the readers that Figs. 2B and 3 must be interpreted as the followings:

  • 25 July 2019

    The original publication of this paper unfortunately contained three errors in Figs.��2B and 3. In Fig.��2B, the TSS site must be counted as ���+��1��� instead of ��������1���. And we indicated wrong sequences in Fig.��3: the construct ���Control��� has a missing one ���A��� in the BCE sequence, and the reverse direction of BCE sequence in the construct ���BCEr��� must be ���GCGGAGTTTCAATT���, not ���CGCCTCAAGTTAA���. For the reasons stated herein, the authors wish to notify the readers that Figs.��2B and 3 must be interpreted as the followings:

References

  • Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. Adv Biochem Eng Biotechnol 57:159–195

    CAS  Google Scholar 

  • Bertossa RC, Kües U, Aebi M, Künzler M (2004) Promoter analysis of cgl2, a galectin encoding gene transcribed during fruiting body formation in Coprinopsis cinerea (Coprinus cinereus). Fungal Genet Biol 41(12):1120–1131

    CAS  PubMed  Google Scholar 

  • Burns C, Leach KM, Elliott TJ, Challen MP, Foster GD, Bailey A (2006) Evaluation of Agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance. Mol Biotechnol 32(2):129–138

    CAS  PubMed  Google Scholar 

  • Carey M, Smale ST (2000) Transcriptional regulation in eukaryotes: concepts, strategies, and techniques. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–50

    Google Scholar 

  • Carnince P, Sandelin A, Albin LB, Katayama S, Shimokawa K, Ponjavic J, Semple CAM, Taylor MS, Pär EG, Frith MC, Forrest ARR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi AL, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635

    Google Scholar 

  • Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58(5):582–594

    CAS  PubMed  Google Scholar 

  • Cumming WL, Celerin M, Crodian J, Bronick JK, Jolan ME (1999) Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants. Curr Genet 36(6):371–382

    Google Scholar 

  • de Mattos-Shipley KMJ, Ford KL, Alberti F, Banks AM, Bailey AM, Foster GD (2016) The good, the bad and the tasty: the many role of mushrooms. Stud Mycol 85:125–157

    PubMed  PubMed Central  Google Scholar 

  • Doniger SW, Fay JC (2007) Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3(5):e99

    PubMed  PubMed Central  Google Scholar 

  • Fei X, Zhao MW, Li YX (2006) Cloning and sequence analysis of a glyceraldehyde-3-phosphate dehydrogenase gene from Ganoderma lucidum. J Microbiol 44(5):515–522

    CAS  PubMed  Google Scholar 

  • Feng J, Bhadauria V, Liu G, Selvaraj G, Hughes GR, Wei Y (2011) Analysis of the promoter region of the gene LIP1 encoding triglyceride lipase from Fusarium graminearum. Microbiol Res 166(8):618–628

    CAS  PubMed  Google Scholar 

  • Gasch AP, Moses AM, Chiang DY, Fraser HB, Bernardini M, Eisen MB (2004) Conservation and evolution of cis-regulatory systems in ascomycetes fungi. PLoS Biol 2(12):e398

    PubMed  PubMed Central  Google Scholar 

  • Gross P, Oelgeschläger T (2006) Core promoter-selective RNA polymerase II transcription. Biochem Soc Symp 73:225–236

    CAS  Google Scholar 

  • Gurr SJ, Unkles SEU, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, London, pp 93–139

    Google Scholar 

  • Hahn S (2004) Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11(5):394–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoter and cis-regulatory elements. Plant Sci 217:109–119

    PubMed  Google Scholar 

  • Hibbett DS, Donoghue MJ (2001) Analysis of character correlation among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 50(2):215–242

    CAS  PubMed  Google Scholar 

  • Honda Y, Matsuyama T, Irie T, Watanabe T (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37(3):209–212

    CAS  PubMed  Google Scholar 

  • Honda Y, Tanigawa E, Tsukihara T, Nguyen XD, Kawabe H, Sakatoku N, Watari J, Sato H, Yano S, Tachiki T, Irie T, Watanabe T, Watanabe T (2019) Stable and transient transformation, and a promoter assay in the selective lignin-degrading fungus, Ceriporiopsis subvermispora. AMB Express 9:92

    PubMed  PubMed Central  Google Scholar 

  • Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339(2):225–229

    CAS  PubMed  Google Scholar 

  • Kajiwara S, Shishido K (1992) Characterization of the promoter region of the basidiomycete Lentinus edodes Le.ras gene. FEMS Microbiol Lett 92(2):147–150

    CAS  Google Scholar 

  • Kato M (2005) An overview of the CCAAT-box binding factor in filamentous fungi: assembly, nuclear translocation, and transcriptional enhancement. Biosci Biotechnol Biochem 69(4):663–672

    CAS  PubMed  Google Scholar 

  • Kilaru S, Kües U (2005) Comparison of gpd genes and their protein products in basidiomycetes. Fungal Genet Newsl 52:18–23

    Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Erika A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Fourrey VC, Zuccaro A, Mycorrhizal Genomics Initiative Consortium, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47(4):410–415

    CAS  PubMed  Google Scholar 

  • Kondoh O, Shishido K (1995) Characterization of promoter region of cell-adhesion protein gene derived from the basidiomycete Lentinus edodes. FEMS Microbiol Lett 130:189–192

    CAS  PubMed  Google Scholar 

  • Larraya LM, Pérez G, Peñas MM, Baars JJP, Mikosch TSP, Pisabarro AG, Ramírez L (1999) Molecular karyotype of the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 65(8):3413–3417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    CAS  PubMed  Google Scholar 

  • Li JJ, Kim RH, Sodek J (1995) An inverted TATA box directs downstream transcription of the bone sialoprotein gene. Biochem J 310:33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lis M, Walther D (2016) The orientation of transcription factor binding site motifs in gene promoter regions: does it matter? BMC Genom 17:185

    Google Scholar 

  • Liu S, Duan Y, Ge C, Chen C, Zho M (2012) Functional analysis of the β2-tubulin gene of Fusarium graminearum and the β-tubulin gene of Botrytis cinerea by homologous replacement. Pest Manag Sci 69(5):582–588

    Google Scholar 

  • Machida M, Chang YC, Manabe M, Yasukawa M, Kunihiro S, Jigami Y (1996) Molecular cloning of a cDNA encoding enolase from the filamentous fungus, Aspergillus oryzae. Curr Genet 30:423–431

    CAS  PubMed  Google Scholar 

  • Matsunaga Y, Ando M, Izumitsu K, Suzuki K, Honda Y, Irie T (2017) A development and an improvement of selectable markers in Pleurotus ostreatus transformation. J Microbiol Methods 134:27–29

    CAS  PubMed  Google Scholar 

  • Mayfield MB, Kishi K, Alic M, Gold MH (1994) Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 60(12):4303–4309

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil JB (1988) Functional characterization of a pyrimidine-rich element in the 5′-noncoding region of the yeast iso-1-cytochrome c gene. Mol Cell Biol 8(3):1045–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messner K, Srebotnik E (1994) Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbiol Rev 13:351–364

    CAS  Google Scholar 

  • Muraguchi H, Ito Y, Kamada T, Yanagi SO (2003) A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphism. FG&B 40:93–102

    CAS  Google Scholar 

  • Nakazawa T, Tatsuta Y, Fujita T, Nakahori K, Kamada T (2010) Mutations in the Cc.rmt1 gene encoding a putative protein arginine methyltransferase alter developmental programs in the basidiomycete Coprinopsis cinerea. Curr Genet 56(4):361–367

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Tsuzuki M, Irie T, Sakamoto M, Honda Y (2016) Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus. Fungal Biol 120(9):1146–1155

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Izuno A, Horii M, Kodera R, Nishimura H, Hirayama Y, Tsunematsu Y, Miyazaki Y, Awano T, Muraguchi H, Watanabe K, Sakamoto M, Takabe K, Watanabe T, Isagi Y, Honda Y (2017) Effects of pex1 disruption on wood lignin biodegradation, fruiting development and the utilization of carbon sources in the white-rot Agaricomycete Pleurotus ostreatus and non-wood decaying Coprinopsis cinerea. Fungal Genet Biol 109:7–15

    CAS  PubMed  Google Scholar 

  • Oakley BR (2004) Tubulins in Aspergillus nidulans. Fungal Genet Biol 41(4):420–427

    CAS  PubMed  Google Scholar 

  • Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede DM, Pouwels PH, van den Hondel CA (1990) Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93(1):101–109

    CAS  PubMed  Google Scholar 

  • Ries LNA, Beattie SR, Espeso EA, Cramer RA, Goldman GH (2016) Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. Genetics 203:335–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roeder RG (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21(9):327–335

    CAS  PubMed  Google Scholar 

  • Roy AL, Singer DS (2015) Core promoters in transcription: old problem, new insights. Trends Biochem Sci 40(3):165–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto Y, Watanabe H, Nagai M, Nakade K, Takahashi M, Sato T (2006) Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence. Plant Physiol 141(2):793–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salame T, Knop D, Tal DT, Levinson D, Yarden O, Hadar Y (2012) Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. AEM 78(15):5341–5352

    CAS  Google Scholar 

  • Seizl M, Hartmann H, Hoeg F, Kurth F, Martin DE, Söding J, Cramer P (2011) A conserved GA element in TATA-less RNA polymerase II promoters. PLoS One 6(11):e27595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma KK, Kuhad RC (2010) Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnol 10:67

    PubMed  PubMed Central  Google Scholar 

  • Sibthorp C, Wu H, Cowley G, Wong PWH, Palaima P, Morozov I, Weedall GD, Caddick MX (2013) Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genom 14:847

    Google Scholar 

  • Singh AP, Singh T (2014) Biotechnological applications of wood-rotting fungi: a review. Biomass Bioenergy 62:198–206

    CAS  Google Scholar 

  • Sugano SS, Suzuki H, Shnimokita E, Chiba H, Noji S, Osakabe Y, Osakabe K (2017) Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Sci Rep 7(1):1260

    PubMed  PubMed Central  Google Scholar 

  • Unkles SE (1992) Gene organization in industrial filamentous fungi. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Chapman and Hall, London, pp 28–53

    Google Scholar 

  • Wang J, Guo L, Zhang K, Wu Q, Lin J (2008) Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour Technol 99:8524–8527

    CAS  PubMed  Google Scholar 

  • Yin C, Robert R (1997) Identification of a functional CT-element in the Phytophthora infestans piypt1 gene promoter. Gene 198(1–2):159–164

    Google Scholar 

  • Yin C, Zheng L, Zhu J, Chen L, Ma A (2015) Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus. FEMS 362(5):fnv010

    Google Scholar 

  • Zhao Z, Liu H, Luo Y, Zhou S, An L, Wang C, Jin Q, Zhou M, Xu JR (2014) Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci Rep 4:6746

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Noda Institute for Scientific Research (to Y. H.), and JSPS KAKENHI [15K14771 and 18H02254 to Y. H.]. We would like to thank Prof. Yitzhak Hadar (Hebrew University of Jerusalem, Israel) for providing P. ostreatus strains 20b, Profs. Kazumitsu Ueda and Noriyuki Kioka (Kyoto University, Japan) for help in measurement of luciferase activity, Prof. Keishi Osakabe (Tokushima University, Japan) for providing the plasmid containing the luciferase reporter gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Honda.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1146 kb)

Supplementary material 2 (DOCX 4782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.X., Sakaguchi, T., Nakazawa, T. et al. A 14-bp stretch plays a critical role in regulating gene expression from β1-tubulin promoters of basidiomycetes. Curr Genet 66, 217–228 (2020). https://doi.org/10.1007/s00294-019-01014-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-01014-5

Keywords

Navigation