Skip to main content
Log in

Desperate times call for desperate measures: benefits and costs of toxin–antitoxin systems

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Toxin–antitoxin (TA) loci were first described as killing systems for plasmid maintenance. The surprisingly abundant presence of TA loci in bacterial chromosomes has stimulated an extensive research in the recent decade aimed to understand the biological importance of these potentially deadly systems. Accumulating evidence suggests that the evolutionary success of genomic TA systems could be explained by their ability to increase bacterial fitness under stress conditions. While TA systems remain quiescent under favorable growth conditions, the toxins can be activated in response to stress resulting in growth suppression and development of stress-tolerant dormant state. Yet, several studies suggest that the TA-mediated stress protection is costly and traded off against decreased fitness under normal growth conditions. Here, we give an overview of the fitness benefits of the chromosomal TA systems, and discuss the costs of TA-mediated stress protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aakre CD, Phung TN, Huang D, Laub MT (2013) A bacterial toxin Inhibits DNA replication elongation through a direct interaction with the beta sliding clamp. Mol Cell 52:617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainelo A, Tamman H, Leppik M, Remme J, Hõrak R (2016) The toxin GraT inhibits ribosome biogenesis. Mol Microbiol 100:719–734

    Article  CAS  PubMed  Google Scholar 

  • Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, Sacher A, Engelberg-Kulka H (2009) Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet 5:e1000390

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726

    Article  CAS  PubMed  Google Scholar 

  • Bibi-Triki S, Li de la Sierra-Gallay I, Lazar N, Leroy A, Van Tilbeurgh H, Sebbane F, Pradel E (2014) Functional and structural analysis of HicA3–HicB3, a novel toxin–antitoxin system of Yersinia pestis. J Bacteriol 196:3712–3723

    Article  PubMed  PubMed Central  Google Scholar 

  • Brantl S, Jahn N (2015) sRNAs in bacterial type I and type III toxin–antitoxin systems. FEMS Microbiol Rev 39:413–427

    Article  PubMed  Google Scholar 

  • Brielle R, Pinel-Marie ML, Felden B (2016) Linking bacterial type I toxins with their actions. Curr Opin Microbiol 30:114–121

    Article  CAS  PubMed  Google Scholar 

  • Brzozowska I, Zielenkiewicz U (2013) Regulation of toxin–antitoxin systems by proteolysis. Plasmid 70:33–41

    Article  CAS  PubMed  Google Scholar 

  • Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NA, Loris R, Zenkin N (2013) The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9:811–817

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury N, Kwan BW, Wood TK (2016) Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Sci Rep 6:20519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen SK, Mikkelsen M, Pedersen K, Gerdes K (2001) RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci USA 98:14328–14333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard M, Jorgensen MG, Gerdes K (2010) Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 75:333–348

    Article  CAS  PubMed  Google Scholar 

  • Cozens RM, Tuomanen E, Tosch W, Zak O, Suter J, Tomasz A (1986) Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother 29:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jonge N, Simic M, Buts L, Haesaerts S, Roelants K, Garcia-Pino A, Sterckx Y, De Greve H, Lah J, Loris R (2012) Alternative interactions define gyrase specificity in the CcdB family. Mol Microbiol 84:965–978

    Article  PubMed  Google Scholar 

  • De la Cruz MA, Zhao W, Farenc C, Gimenez G, Raoult D, Cambillau C, Gorvel JP, Meresse S (2013) A toxin–antitoxin module of Salmonella promotes virulence in mice. PLoS Pathog 9:e1003827

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135

    Article  PubMed  PubMed Central  Google Scholar 

  • Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin–antitoxin pair. Proc Natl Acad Sci USA 106:894–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G (2010) Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38:3743–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254

    Article  CAS  PubMed  Google Scholar 

  • Germain E, Roghanian M, Gerdes K, Maisonneuve E (2015) Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proc Natl Acad Sci USA 112:5171–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goeders N, Van Melderen L (2014) Toxin–antitoxin systems as multilevel interaction systems. Toxins (Basel) 6:304–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen S, Vulic M, Min J, Yen TJ, Schumacher MA, Brennan RG, Lewis K (2012) Regulation of the Escherichia coli HipBA toxin–antitoxin system by proteolysis. PLoS One 7:e39185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazan R, Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genom 272:227–234

    Article  CAS  Google Scholar 

  • Hazan R, Sat B, Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol 186:3663–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helaine S, Kugelberg E (2014) Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 22:417–424

    Article  CAS  PubMed  Google Scholar 

  • Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–208

    Article  CAS  PubMed  Google Scholar 

  • Jensen RB, Gerdes K (1995) Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol 17:205–210

    Article  CAS  PubMed  Google Scholar 

  • Kasari V, Mets T, Tenson T, Kaldalu N (2013) Transcriptional cross-activation between toxin–antitoxin systems of Escherichia coli. BMC Microbiol 13:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G (2013) HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 4:3001

    Article  PubMed  Google Scholar 

  • Kim Y, Wang X, Ma Q, Zhang XS, Wood TK (2009) Toxin–antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 191:1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Koga M, Otsuka Y, Lemire S, Yonesaki T (2011) Escherichia coli rnlA and rnlB compose a novel toxin–antitoxin system. Genetics 187:123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318:652–655

    Article  CAS  PubMed  Google Scholar 

  • Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H (2009) A differential effect of E. coli toxin–antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 4:e6785

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Engelberg-Kulka H (2014) Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents. Curr Opin Microbiol 21:22–27

    Article  CAS  PubMed  Google Scholar 

  • Leplae R, Geeraerts D, Hallez R, Guglielmini J, Dreze P, Van Melderen L (2011) Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Lobato-Marquez D, Moreno-Cordoba I, Figueroa V, Diaz-Orejas R, Garcia-del Portillo F (2015) Distinct type I and type II toxin–antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 5:9374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157:539–548

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 108:13206–13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin–antitoxin activity. Cell 154:1140–1150

    Article  CAS  PubMed  Google Scholar 

  • Markovski M, Wickner S (2013) Preventing bacterial suicide: a novel toxin–antitoxin strategy. Mol Cell 52:611–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda H, Tan Q, Awano N, Wu KP, Inouye M (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84:979–989

    Article  CAS  PubMed  Google Scholar 

  • Mine N, Guglielmini J, Wilbaux M, Van Melderen L (2009) The decay of the chromosomally encoded ccdO157 toxin–antitoxin system in the Escherichia coli species. Genetics 181:1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell HL, Dashper SG, Catmull DV, Paolini RA, Cleal SM, Slakeski N, Tan KH, Reynolds EC (2010) Treponema denticola biofilm-induced expression of a bacteriophage, toxin–antitoxin systems and transposases. Microbiology 156:774–788

    Article  CAS  PubMed  Google Scholar 

  • Mutschler H, Gebhardt M, Shoeman RL, Meinhart A (2011) A novel mechanism of programmed cell death in bacteria by toxin–antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol 9:e1001033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton JP, Mulvey MA (2012) Toxin–antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8:e1002954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura T, Hiraga S (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci USA 80:4784–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuka Y (2016) Prokaryotic toxin–antitoxin systems: novel regulations of the toxins. Curr Genet 62:379–382

    Article  CAS  PubMed  Google Scholar 

  • Otsuka Y, Yonesaki T (2012) Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol Microbiol 83:669–681

    Article  CAS  PubMed  Google Scholar 

  • Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage HR, Connolly LE, Cox JS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin–antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Kordis AA, Sonenshine DE, Daines DA (2014) The ToxAvapA toxin–antitoxin locus contributes to the survival of nontypeable Haemophilus influenzae during infection. PLoS One 9:e91523

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocker A, Meinhart A (2015) A cis-acting antitoxin domain within the chromosomal toxin–antitoxin module EzeT of Escherichia coli quenches toxin activity. Mol Microbiol 97:589–604

    Article  CAS  PubMed  Google Scholar 

  • Rocker A, Meinhart A (2016) Type II toxin: antitoxin systems. More than small selfish entities? Curr Genet 62:287–290

    Article  CAS  PubMed  Google Scholar 

  • Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci USA 107:12541–12546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R (2013) Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 50:136–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster CF, Bertram R (2013) Toxin–antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340:73–85

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Harrison EM, Bi D, Tai C, He X, Ou HY, Rajakumar K, Deng Z (2011) TADB: a web-based resource for type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res 39:D606–D611

    Article  CAS  PubMed  Google Scholar 

  • Slattery A, Victorsen AH, Brown A, Hillman K, Phillips GJ (2013) Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin–antitoxin module. J Bacteriol 195:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soo VW, Wood TK (2013) Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD. Sci Rep 3:3186

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepanyan K, Wenseleers T, Duenez-Guzman EA, Muratori F, Van den Bergh B, Verstraeten N, De Meester L, Verstrepen KJ, Fauvart M, Michiels J (2015) Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa. Mol Ecol 24:1572–1583

    Article  PubMed  Google Scholar 

  • Tamman H, Ainelo A, Ainsaar K, Hõrak R (2014) A moderate toxin, GraT, modulates growth rate and stress tolerance of Pseudomonas putida. J Bacteriol 196:157–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamman H, Ainelo A, Tagel M, Hõrak R (2016) Stability of the GraA antitoxin depends on the growth phase, ATP level and global regulator MexT. J Bacteriol 198:787–796

    Article  CAS  PubMed Central  Google Scholar 

  • Tan Q, Awano N, Inouye M (2011) YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Mol Microbiol 79:109–118

    Article  CAS  PubMed  Google Scholar 

  • Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132:1297–1304

    CAS  PubMed  Google Scholar 

  • Unoson C, Wagner EG (2008) A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 70:258–270

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wood TK (2011) Toxin–antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77:5577–5583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M, Tarone AM, Benedik MJ, Peti W, Page R et al (2011) Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol 7:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W et al (2012) A new type V toxin–antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lord DM, Hong SH, Peti W, Benedik MJ, Page R, Wood TK (2013) Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ Microbiol 15:1734–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Wang X, Drlica K, Zhao X (2011) A toxin–antitoxin module in Bacillus subtilis can both mitigate and amplify effects of lethal stress. PLoS One 6:e23909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Sterckx Y, Mitchenall LA, Maxwell A, Loris R, Waldor MK (2010) Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct from other gyrase inhibitors. J Biol Chem 285:40397–40408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Inouye M (2011) RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Mol Microbiol 79:1418–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang Q, Li M, Heijstra BD, Wang S, Liang Q, Qi Q (2013) Escherichia coli toxin gene hipA affects biofilm formation and DNA release. Microbiology 159:633–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Andres Ainelo for manuscript proofreading. This work was supported by Grant IUT20-19 from the Estonian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Hõrak.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hõrak, R., Tamman, H. Desperate times call for desperate measures: benefits and costs of toxin–antitoxin systems. Curr Genet 63, 69–74 (2017). https://doi.org/10.1007/s00294-016-0622-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0622-2

Keywords

Navigation