Skip to main content
Log in

Last hope for the doomed? Thoughts on the importance of a parasexual cycle for the yeast Candida albicans

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The yeast Candida albicans, a commensal colonizer and occasional pathogen of humans, has a rudimentary mating ability. However, mating is a cumbersome process that has never been observed outside the laboratory, and the population structure of the species is predominantly clonal. Here we discuss recent findings that indicate that mating ability is under selection in C. albicans, i.e. that it is a biologically relevant process. C. albicans strains can only mate after they have sustained genetic damage. We propose that the rescue of such damaged strains by mating may be the primary reason why mating ability is under selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal AA, Conner JK, Rasmann S (2010) Tradeoffs and negative correlations in evolutionary ecology. In: Bell G, Eanes WF, Futuyma DJ, Levinton JS (eds) Evolution after Darwin: the first 150 years. Sinauer Associates Sunderland, Massachusetts, pp 243–268

    Google Scholar 

  • Alby K, Schaefer D, Bennett RJ (2009) Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460:890–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett RJ, Johnson AD (2003) Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 22:2505–2515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett RJ, Miller MG, Chua PR, Maxon ME, Johnson AD (2005) Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol Microbiol 55:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Bougnoux M-E, Pujol C, Diogo D, Bouchier C, Soll DR, d’Enfert C (2008) Mating is rare within as well as between clades of the human pathogen Candida albicans. Fungal Genet Biol 45:221–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chibana H, Beckerman JL, Magee PT (2000) Fine-resolution physical mapping of genomic diversity in Candida albicans. Genome Res 10(12):1865–1877

    Article  CAS  PubMed  Google Scholar 

  • Cox MP, Holland BR, Wilkins MC, Schmid J (2013) Reconstructing historic changes in locus-specific recombination rates. BMC Genet 14:11

    Article  PubMed Central  PubMed  Google Scholar 

  • de Visser JA, Elena SF (2007) The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 8:139–149

    Article  PubMed  Google Scholar 

  • Diogo D, Bouchier C, d’Enfert C, Bougnoux M-E (2009) Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet Biol 46:159–168

    Article  PubMed  Google Scholar 

  • Forche A, May G, Magee PT (2005) Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during Infection. Eukaryot Cell 4(1): 156–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ (2008) The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6:e110. doi:10.1371/journal.pbio.0060110

    Article  PubMed Central  PubMed  Google Scholar 

  • Forche A, Magee PT, Selmecki A, Berman J, May G (2009) Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182:799–811. doi:10.1534/genetics.109.103325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, Petersen K, Berman J (2011) Stress alters rates and types of loss of heterozygosity in Candida albicans. MBio 2:e00200–e00211. doi:10.1128/mBio.00129-11

    Article  Google Scholar 

  • Goddard MR, Godfray HC, Burt A (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–640

    Article  CAS  PubMed  Google Scholar 

  • Gräser Y, Volovsek M, Arrington J, Schönian G, Presber W, Mitchell TG, Vilgalys R (1996) Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc Natl Acad Sci USA 93:12473–12477

    Article  PubMed Central  PubMed  Google Scholar 

  • Heitman J (2010) Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 8:86–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang YM, Su CH, Bennett RJ, Wang Y, Berman J (2013) The ’obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494:55–59. doi:10.1038/nature11865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill J, O’Meara TR, Cowen EL (2015) Fitness trade-offs associated with the evolution of resistance to antifungal drug combinations. Cell Rep 10:809–819. doi:10.1016/j.celrep.2015.01.009

    Article  CAS  Google Scholar 

  • Holmes AR, Tsao S, Ong S-W, Lamping E, Niimi K, Monk BC, Niimi M, Kaneko A, Holland BR, Schmid J, Cannon RD (2006) Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 62:170–186

    Article  CAS  PubMed  Google Scholar 

  • Hull CM, Johnson AD (1999) Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:1271–1276

    Article  CAS  PubMed  Google Scholar 

  • Hull CM, Raisner RM, Johnson AD (2000) Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307–310

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen MD, Duncan AD, Bain J, Johnson EM, Naglik JR, Shaw DJ, Odds FC (2008) Mixed Candida albicans strain populations in colonized and infected mucosal tissues. FEMS Yeast Res 8(8):1334–1338. doi:10.1111/j.1567-1364.2008.00438.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura M, Ohta T (1969) The average number of generations until fixation of a mutant gene in a finite population. Genetics 61:763–771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Smiley MJ, Johnson CJ (1980) Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int J Syst Evol Microbiol 30:503–513. doi:10.1099/00207713-30-2-503

    CAS  Google Scholar 

  • Lang GI, Murray AW, Botstein D (2009) The cost of gene expression underlies a fitness trade-off in yeast. Proc Natl Acad Sci USA 106:5755–5760. doi:10.1073/pnas.0901620106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lockhart SR, Daniels KJ, Zhao R, Wessels D, Soll DR (2003) Cell biology of mating in Candida albicans. Eukaryot Cell 2:49–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magee BB, Magee PT (2000) Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289:310–313

    Article  CAS  PubMed  Google Scholar 

  • Magee PT, Magee BB (2004) Through a glass opaquely: the biological significance of mating in Candida albicans. Curr Opin Microbiol 7:661–665

    Article  CAS  PubMed  Google Scholar 

  • Miller M, Johnson A (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293

    Article  CAS  PubMed  Google Scholar 

  • Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM (2011) Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science 333:216–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  • Odds FC (1988) Candida and candidosis, 2nd edn. Bailliere Tindall, London

    Google Scholar 

  • Odds FC, Bougnoux ME, Shaw DJ, Bain JM, Davidson AD, Diogo D, Jacobsen MD, Lecomte M, Li SY, Tavanti A, Maiden MC, Gow NA, d’Enfert C (2007) Molecular phylogenetics of Candida albicans. Eukaryot Cell 6:1041–1052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252–261

    Article  CAS  PubMed  Google Scholar 

  • Papon N, Savini V, Lanoue A, Simkin A, Crèche J, Giglioli-Guivarc’h N, Clastre M, Courdavault V, Sibirny A (2013) Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet 59:73–90. doi:10.1007/s00294-013-0391-0

    Article  CAS  PubMed  Google Scholar 

  • Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3:241–251

    Article  CAS  PubMed  Google Scholar 

  • Rustchenko-Bulgac EP, Sherman F, Hicks JB (1990) Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans. J Bacteriol 172(3):1276–1283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MSM, Samad S, Carr M, Parr D, McKinney W, Schousboe M, Harris B, Ikram R, Harris M, Restrepo A, Hoyos G, Singh KP (1999) Evidence for a general-purpose genotype in Candida albicans, highly prevalent in multiple geographic regions, patient types and types of infection. Microbiology 145:2405–2414

    Article  CAS  PubMed  Google Scholar 

  • Schmid J, Cannon RD, Holland B (2004) A futile act? Thoughts on the reproductive biology of Candida albicans. Mycologist 18:158–163

    Article  Google Scholar 

  • Soll DR, Galask R, Schmid J, Hanna C, Mac K, Morrow B (1991) Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J Clin Microbiol 29(8):1702–1710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tavanti A, Gow NA, Maiden MC, Odds FC, Shaw DJ (2004) Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genet Biol 41:553–562

    Article  CAS  PubMed  Google Scholar 

  • Tibayrenc M (1997) Are Candida albicans natural populations subdivided? Trends Microbiol 5:253–257

    Article  CAS  PubMed  Google Scholar 

  • Tsai IJ, Bensasson D, Burt A, Koufopanou V (2008) Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci USA 105:4957–4962. doi:10.1073/pnas.0707314105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vrijenhoek RC, Parker EJ (2009) Geographical parthogenesis: general purpose genotypoes and frozen niche variation. In: Isa Schön KM, Dijk PJ, van Dijk P (eds) Lost Sex: the evolutionary biology of parthenogenesis. Springer, Berlin, pp 99–132

    Chapter  Google Scholar 

  • Wu W, Pujol C, Lockhart SR, Soll DR (2005) Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169:1311–1327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu W, Lockhart SR, Pujol C, Srikantha T, Soll DR (2007) Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol Microbiol 64:1587–1604

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Tao L, Nobile CJ, Tong Y, Guan G, Sun Y, Cao C, Hernday AD, Johnson AD, Zhang L, Bai FY, Huang G (2013) White-opaque switching in natural MTLa/alpha isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex. PLoS Biol 11:e1001525. doi:10.1371/journal.pbio.1001525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang N, Cannon RD, Holland B, Patchett M, Schmid J (2010) Impact of genetic background on allele selection in a highly mutable Candida albicans gene, PNG2. PLoS One 5:e9614

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Magee BB, Magee PT, Holland BR, Rodrigues E, Holmes AR, Cannon RD, Schmid J (2015) Selective advantages of a parasexual cycle for the yeast Candida albicans. Genetics 200:1117–1132. doi:10.1534/genetics.115.177170

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Schmid.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, J., Magee, P.T., Holland, B.R. et al. Last hope for the doomed? Thoughts on the importance of a parasexual cycle for the yeast Candida albicans . Curr Genet 62, 81–85 (2016). https://doi.org/10.1007/s00294-015-0516-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0516-8

Keywords

Navigation