Skip to main content

Advertisement

Log in

Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Candida glabrata, an opportunistic fungal pathogen, accounts for 18–26 % of all Candida systemic infections in the US. C. glabrata has a robust oxidative stress response (OSR) and in this work we characterized the role of glutathione (GSH), an essential tripeptide-like thiol-containing molecule required to keep the redox homeostasis and in the detoxification of metal ions. GSH is synthesized from glutamate, cysteine, and glycine by the sequential action of Gsh1 (γ-glutamyl-cysteine synthetase) and Gsh2 (glutathione synthetase) enzymes. We first screened for suppressor mutations that would allow growth in the absence of GSH1 (gsh1∆ background) and found a single point mutation in PRO2 (pro2-4), a gene that encodes a γ-glutamyl phosphate reductase and catalyzes the second step in the biosynthesis of proline. We demonstrate that GSH is important in the OSR since the gsh1pro2-4 and gsh2∆ mutant strains are more sensitive to oxidative stress generated by H2O2 and menadione. GSH is also required for Cadmium tolerance. In the absence of Gsh1 and Gsh2, cells show decreased viability in stationary phase. Furthermore, C. glabrata does not contain Saccharomyces cerevisiae high affinity GSH transporter ortholog, ScOpt1/Hgt1, however, our genetic and biochemical experiments show that the gsh1pro2-4 and gsh2∆ mutant strains are able to incorporate GSH from the medium. Finally, GSH and thioredoxin, which is a second redox system in the cell, are not essential for the catalase-independent adaptation response to H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Lahham A, Rohde V, Heim P et al (1999) Biosynthesis of phytochelatins in the fission yeast. Phytochelatin synthesis: a second role for the glutathione synthetase gene of Schizosaccharomyces pombe. Yeast 15:385–396

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM (1992) Short protocols in molecular biology: a compendium of methods from Current protocols in molecular biology. Greene, New York

    Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Article  PubMed  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265

    Article  PubMed  CAS  Google Scholar 

  • Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15:1456–1461

    Article  PubMed  CAS  Google Scholar 

  • Calvin NM, Hanawalt PC (1988) High-efficiency transformation of bacterial cells by electroporation. J Bacteriol 170:2796–2801

    Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  PubMed  CAS  Google Scholar 

  • Castano I, Kaur R, Pan S et al (2003) Tn7-based genome-wide random insertional mutagenesis of Candida glabrata. Genome Res 13:905–915

    Article  PubMed  CAS  Google Scholar 

  • Castano I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55:1246–1258

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri B, Ingavale S, Bachhawat AK (1997) apd1 + , a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics 145:75–83

    PubMed  CAS  Google Scholar 

  • Cormack BP, Falkow S (1999) Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151:979–987

    Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582

    Article  PubMed  CAS  Google Scholar 

  • Cuellar-Cruz M, Briones-Martin-del-Campo M, Canas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L, Castano I, De Las Penas A (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7:814–825

    Article  PubMed  CAS  Google Scholar 

  • De Las PenasA, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245–2258

    Article  Google Scholar 

  • Diekema DJ, Messer SA, Brueggemann AB, Coffman SL, Doern GV, Herwaldt LA, Pfaller MA (2002) Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol 40:1298–1302

    Article  PubMed  CAS  Google Scholar 

  • Domergue R, Castano I, De Las Penas A, Zupancic M, Lockatell V, Hebel JR, Johnson D, Cormack BP (2005) Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308:866–870

    Google Scholar 

  • Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6:63–74

    Article  PubMed  CAS  Google Scholar 

  • Fidel PL, Cutright JL, Tait L, Sobel JD (1996) A murine model of Candida glabrata vaginitis. J Infect Dis 173:425–431

    Google Scholar 

  • Gasch AP (2007) Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24:961–976

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1997) Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol Biol Cell 8:1699–1707

    PubMed  CAS  Google Scholar 

  • Grant CM, Perrone G, Dawes IW (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253:893–898

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hauser M, Donhardt AM, Barnes D, Naider F, Becker JM (2000) Enkephalins are transported by a novel eukaryotic peptide uptake system. J Biol Chem 275:3037–3041

    Article  PubMed  CAS  Google Scholar 

  • Heeren G, Jarolim S, Laun P et al (2004) The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway. FEMS Yeast Res 5:157–167

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  PubMed  CAS  Google Scholar 

  • Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS, Kang SO (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148:3705–3713

    PubMed  CAS  Google Scholar 

  • Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320(Pt 1):61–67

    PubMed  CAS  Google Scholar 

  • Jaspers C, Penninckx M, Wiame JM (1980) Glutathione metabolism and the transport of amino acids in Saccharomyces cerevisiae. The gamma-glutamyltranspeptidase [proceedings]. Arch Int Physiol Biochim 88:B34

    PubMed  CAS  Google Scholar 

  • Kaur R, Ma B, Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci USA 104:7628–7633

    Article  PubMed  CAS  Google Scholar 

  • Kumar C, Sharma R, Bachhawat AK (2003) Utilization of glutathione as an exogenous sulfur source is independent of gamma-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative glutathione degradation pathway. FEMS Microbiol Lett 219:187–194

    Article  PubMed  CAS  Google Scholar 

  • Kumar C, Igbaria A, D’Autreaux B et al (2011) Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 30:2044–2056

    Article  PubMed  CAS  Google Scholar 

  • Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 30:E2

    Article  PubMed  Google Scholar 

  • Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040–16046

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94:42–47

    Article  PubMed  CAS  Google Scholar 

  • Li L, Redding S, Dongari-Bagtzoglou A (2007) Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res 86:204–215

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Mirabal HR, Winther JR (2008) Redox characteristics of the eukaryotic cytosol. Biochim Biophys Acta 1783:629–640

    Article  PubMed  CAS  Google Scholar 

  • Luikenhuis S, Perrone G, Dawes IW, Grant CM (1998) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9:1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Mansour MK, Levitz SM (2002) Interactions of fungi with phagocytes. Curr Opin Microbiol 5:359–365

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  • Muller EG (1991) Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 266:9194–9202

    PubMed  CAS  Google Scholar 

  • Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63:113–121

    Article  PubMed  Google Scholar 

  • Mutoh N, Kawabata M, Kitajima S (2005) Effects of four oxidants, menadione, 1-chloro-2,4-dinitrobenzene, hydrogen peroxide and cumene hydroperoxide, on fission yeast Schizosaccharomyces pombe. J Biochem 138:797–804

    Article  PubMed  CAS  Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    PubMed  CAS  Google Scholar 

  • Paris S, Wysong D, Debeaupuis JP, Shibuya K, Philippe B, Diamond RD, Latge JP (2003) Catalases of Aspergillus fumigatus. Infect Immun 71:3551–3562

    Article  PubMed  CAS  Google Scholar 

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305

    PubMed  CAS  Google Scholar 

  • Penninckx MJ, Elskens MT (1993) Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol 34:239–301

    Article  PubMed  CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53

    Article  PubMed  Google Scholar 

  • Presterl E, Daxbock F, Graninger W, Willinger B (2007) Changing pattern of candidemia 2001–2006 and use of antifungal therapy at the University Hospital of Vienna, Austria. Clin Microbiol Infect 13:1072–1076

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Roetzer A, Gregori C, Jennings AM et al (2008) Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 69:603–620

    Article  PubMed  CAS  Google Scholar 

  • Roetzer A, Gratz N, Kovarik P, Schuller C (2010) Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12:199–216

    Article  PubMed  CAS  Google Scholar 

  • Roetzer A, Klopf E, Gratz N et al (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585:319–327

    Article  PubMed  CAS  Google Scholar 

  • Saijo T, Miyazaki T, Izumikawa K et al (2010) Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Mycopathologia 169:81–90

    Article  PubMed  CAS  Google Scholar 

  • Seider K, Brunke S, Schild L et al (2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187:3072–3086

    Article  PubMed  CAS  Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, USA

    Google Scholar 

  • Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 277:26944–26949

    Article  PubMed  CAS  Google Scholar 

  • Spector D, Labarre J, Toledano MB (2001) A genetic investigation of the essential role of glutathione: mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 276:7011–7016

    Article  PubMed  CAS  Google Scholar 

  • Stephen DW, Jamieson DJ (1996) Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 141:207–212

    Article  PubMed  CAS  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    Article  PubMed  CAS  Google Scholar 

  • Thompson LJ, Merrell DS, Neilan BA, Mitchell H, Lee A, Falkow S (2003) Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect Immun 71:2643–2655

    Article  PubMed  CAS  Google Scholar 

  • Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci USA 101:6564–6569

    Article  PubMed  CAS  Google Scholar 

  • Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581:3598–3607

    Article  PubMed  CAS  Google Scholar 

  • Tomenchok DM, Brandriss MC (1987) Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. J Bacteriol 169:5364–5372

    PubMed  CAS  Google Scholar 

  • Veeravalli K, Boyd D, Iverson BL, Beckwith J, Georgiou G (2011) Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat Chem Biol 7:101–105

    Article  PubMed  CAS  Google Scholar 

  • Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD (1998) Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 66:1953–1961

    PubMed  CAS  Google Scholar 

  • Yadav AK, Desai PR, Rai MN, Kaur R, Ganesan K, Bachhawat AK (2011) Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Microbiology 157:484–495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lina Riego, Marcela Briones and Jacqueline Juárez for helpful discussions. This work was funded by a Consejo Nacional de Ciencia y Tecnología (CONACYT) fellowship to G.G.E. (48580) and E.O.Z. (233455). This work was funded by a CONACYT grant no. CB-2010-01-153929 to A.D.L.P and grant no. CB-2010-01-151517 to I.C.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro De Las Peñas.

Additional information

Communicated by B. Cormack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Escobedo, G., Orta-Zavalza, E., Castaño, I. et al. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata . Curr Genet 59, 91–106 (2013). https://doi.org/10.1007/s00294-013-0390-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-013-0390-1

Keywords

Navigation