Skip to main content
Log in

The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We studied the genomic structure and RNA editing of mitochondrial cox1, cox2, cob and atp9 from the horsetail Equisetum arvense, a representative of an old fern lineage. Editing of cox1, cob and atp9 mRNAs occur only by C-to-U transitions. No changes were found in cox2 transcripts constituting one of the rare examples of unedited mitochondrial mRNA in land plants. From three intervening sequences in cox1, cox1i395 and cox1i624 are group IB introns homologous to the Marchantia polymorpha cox1 introns, and cox1i747 is a group IIA intron different to other introns found in plant mtDNA. The group II intron cox2i373 is very similar to other introns found in cox2 from vascular plants. While cob and atp9 have no introns and display the gene structure found in seed plants, various nucleotide substitutions abolish the only potential ORF, a LAGLIDADG endonuclease present in cox1i395. Thus, E. arvense mitochondria conserve two group I introns from non-vascular plants, probably inherited from a common ancestor with liverworts. Analogous to seed plants, E. arvense has no potential mitochondrial splicing factors encoded in these introns. This is the first report concerning the presence of vertically inherited group I introns in vascular plant mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araya A, Bégu D, Litvak S (1994) RNA editing in plants. Physiol Plant 91:543–550

    Article  CAS  Google Scholar 

  • Asakura Y, Barkan A (2007) A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell 19:3864–3875

    Article  PubMed  CAS  Google Scholar 

  • Bégu D, Graves PV, Domec C, Arselin G, Litvak S, Araya A (1990) RNA editing of wheat mitochondrial atp synthase subunit 9: direct protein and cDNA sequencing. Plant Cell 2:1283–1290

    Article  PubMed  Google Scholar 

  • Bégu D, Mercado A, Farré JC, Moenne A, Holuigue L, Araya A, Jordana X (1998) Editing status of mat-r transcripts in mitochondria from two plant species: C-to-U changes occur in putative functional RT and maturase domains. Curr Genet 33:420–428

    Article  PubMed  Google Scholar 

  • Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group I introns. Nucl Acids Res 15:7217–7221

    Article  PubMed  CAS  Google Scholar 

  • Chaw S-M, Shih AC-C, Wang D, Wu Y-W, Liu S-M, Chou T-Y (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, BpU sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Qiu YL, Kuhlman P, Palmer JD (1998) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14244–14249

    Article  PubMed  CAS  Google Scholar 

  • Colleaux L, d’Auriol L, Betermier M, Cottarel G, Jacquier Agalibert F, Dujon B (1986) Universal code equivalent of a yeast mitochondrial reading frame is expressed into E. coli as a specific double stranded endonuclease. Cell 44:521–533

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1990) Differences in editing at homologous sites in messenger RNAs from angiosperm mitochondria. Nucleic Acids Res 18:5189–5196

    Article  PubMed  CAS  Google Scholar 

  • Dombrovska O, Qiu Y-L (2004) Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol Phylogenet Evol 32:246–263

    Article  PubMed  CAS  Google Scholar 

  • Duff RJ (2006) Divergent RNA editing frequencies in hornwort mitochondrial nad5 sequences. Gene 366:285–291

    Article  PubMed  CAS  Google Scholar 

  • Duff RJ, Nickrent DL (1997) Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. J Mol Evol 45:631–639

    Article  PubMed  CAS  Google Scholar 

  • Dujon B, Colleaux L, Jacquier A, Michel F, Monteilhet C (1986) Mitochondrial introns as mobile genetic elements: the role of intron-encoded proteins. In: Wickner RB, Hinnebush A, Lambowitz AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements in lower eukaryotes. Plenum Press, New York, pp 5–27

    Google Scholar 

  • Farré J-C, Araya A (2002) RNA splicing in higher plant mitochondria: determination of functional elements in group II intron from a chimeric cox II gene in electroporated wheat mitochondria. Plant J 29:203–214

    Article  PubMed  Google Scholar 

  • Giegé P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFS. Proc Natl Acad Sci 96:15324–15329

    Article  PubMed  Google Scholar 

  • Gonzalez P, Barroso G, Labarère J (1998) Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies. Gene 220:45–53

    Article  PubMed  CAS  Google Scholar 

  • Gualberto J-M, Lamattina L, Bonnard G, Weil J-H, Grienenberger J-M (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662

    Article  PubMed  CAS  Google Scholar 

  • Groth-Malonek M, Pruchner D, Grewe F, Knoop V (2005) Ancestors of trans-splicing mitochondrial intron support serial sister group relationships of hornworts and mosses with vascular plants. Mol Biol Evol 22:160–174

    Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Henrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139

    Article  PubMed  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half of the genes functional. Nucleic Acids Res 31:2417–2423

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Laforest M-J, Burger G (2007) Mitochondrial introns: a critical view. Trends Genet 23:119–125

    Article  PubMed  CAS  Google Scholar 

  • Lazowska J, Jacq C, Slonimski PP (1980) Sequence of introns and flanking exons in wild-type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell 22:333–348

    Article  PubMed  CAS  Google Scholar 

  • Lu MZ, Szmidt AE, Wang XR (1998) RNA editing in gymnosperms and its impact on the evolution of the mitochondrial cox1 gene. Plant Mol Biol 37:225–234

    Article  PubMed  CAS  Google Scholar 

  • Malek O, Lättig K, Hiesel R, Brennicke A, Knoop V (1996) RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15:1403–1411

    PubMed  CAS  Google Scholar 

  • Michel F, Jacquier A, Dujon B (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64:867–881

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Umesono K, Oseki H (1989) Comparative and functional anatomy of group II catalytic intron—a review. Gene 82:5–30

    Article  PubMed  CAS  Google Scholar 

  • Mohr G, Lambowitz AM (2003) Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res 32:647–652

    Article  CAS  Google Scholar 

  • Nakagawa N, Sakurai N (2006) A mutation in At-nMat 1a, which encodes a nuclear gene having similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana. Plant Cell 47:772–783

    Article  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki N, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. J Mol Biol 223:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ohta E, Oda K, Yamato K, Nakamura Y, Takemura M, Nozato N, Akashi K, Ohyama K, Michel F (1993) Group I introns in the liverwort mitochondrial genome: the gene coding for subunit 1 of cytochrome oxidase shares 5 intron positions with its fungal counterparts. Nucleic Acids Res 21:1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfilll R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Saldanha R, Mohr G, Belfort M, Lambowitz AM (1993) Group I and group II introns. FASEB J 7:15–24

    PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777

    Article  PubMed  CAS  Google Scholar 

  • Sper-Whitis GL, Russell AL, Vaughn JC (1994) Mitochondrial RNA editing of cytochrome-c-oxidase subunit II (coxII) in the primitive vascular plant Psilotum nudum. Biochim Biophys Acta 1218:218–220

    PubMed  CAS  Google Scholar 

  • Sper-Whitis GL, Moody JL, Vaughn JC (1996) Universality of mitochondrial RNA editing in cytochrome-c oxidase subunit I (coxI) among land plants. Biochim Biophys Acta 1307:301–308

    PubMed  Google Scholar 

  • Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing. J Mol Evol 48:303–312

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwata M, Sato N (2007) The mitochondrial genome of the moss Physcomitrella patens sheds a new light on mitochondrial evolution in land plants. Mol Biol Evol 19:24–38

    Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Vangerow S, Teerkorn T, Knoop V (1999) Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biol 1:235–243

    Article  CAS  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kulman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric cox1 gene of Peperomia. J Mol Evol 41:563–572

    Article  PubMed  CAS  Google Scholar 

  • Vicens Q, Cech TR (2006) Atomic level architecture of group I introns revealed. Trends Biol Sci 31:41–51

    Article  CAS  Google Scholar 

  • Wahleithner JA, Macfarlane JL, Wolstenholme DR (1990) A sequence encoding a maturase-related protein in a group-II intron of a plant mitochondrial nad1 gene. Proc Natl Acad Sci USA 87:548–552

    Article  PubMed  CAS  Google Scholar 

  • Waring RB, Davies RW, Scazzochio C, Brown TA (1982) Internal structure of a mitochondrial intron of Aspergillus nidulans. Proc Natl Acad Sci USA 79:6332–6336

    Article  PubMed  CAS  Google Scholar 

  • Wikström N, Pryer KM (2005) Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among fern and horsetails. Mol Phylogenet Evol 36:484–493

    Article  PubMed  CAS  Google Scholar 

  • Zhu X-Y, Chase MW, Qiu Y-L, Kong H-Z, Dilcher DL, Li J-H, Chen Z-D (2007) Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evol Biol 7:217–231

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Christophe Hubert for helpful assistance in sequence analysis, and are greatly indebted to Simon Litvak for constant encouragements and support. This research was supported by the Centre National de la Recherche Scientifique, the Université Victor Segalen Bordeaux 2, France and the Ministère de l’Enseignement Supérieur et de la Recherche. DNA Sequencing was performed at the Genotyping and Sequencing Facility of Bordeaux (grants from the Conseil Régional d’Aquitaine no. 20030304002FA and 20040305003FA and from the European Union, FEDER no. 2003227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bégu.

Additional information

Communicated by L. Tomaska.

Nucleotide sequence data reported are available in GEN Bank databases under the accession numbers FJ376598 (cox1), FJ376799 (cox2), FJ376600 (cob) and FJ389746 (atp9).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bégu, D., Araya, A. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Curr Genet 55, 69–79 (2009). https://doi.org/10.1007/s00294-008-0225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0225-7

Keywords

Navigation