Skip to main content

Advertisement

Log in

Molecular cloning of three pyranose dehydrogenase-encoding genes from Agaricus meleagris and analysis of their expression by real-time RT-PCR

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Sugar oxidoreductases such as cellobiose dehydrogenase or pyranose oxidase are widespread enzymes among fungi, whose biological function is largely speculative. We investigated a similar gene family in the mushroom Agaricus meleagris and its expression under various conditions. Three genes (named pdh1, pdh2 and pdh3) putatively encoding pyranose dehydrogenases were isolated. All three genes displayed a conserved structure and organization, and the respective cDNAs contained ORFs translating into polypeptides of 602 or 600 amino acids. The N-terminal sections of all three genes encode putative signal peptides consistent with the enzymes extracellular secretion. We cultivated the fungus on different carbon sources and analyzed the mRNA levels of all three genes over a period of several weeks using real-time RT-PCR. The glyceraldehyde-3-phosphate dehydrogenase gene from A. meleagris was also isolated and served as reference gene. pdh2 and pdh3 are essentially transcribed constitutively, whereas pdh1 expression is upregulated upon exhaustion of the carbon source; pdh1 appears to be additionally regulated under conditions of oxygen limitation. These data are consistent with an assumed role in lignocellulose degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ander P, Marzullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J Biotechnol 53:115–131

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM et al (1990) Current protocols in molecular biology. Wiley–Interscience, New York

    Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  • Daniel G, Volc J, Kubatova E (1994) Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60:2524–2532

    PubMed  CAS  Google Scholar 

  • de Koker TH, Mozuch MD, Cullen D, Gaskell J, Kersten PJ (2004) Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Appl Environ Microbiol 70:5794–5800

    Article  PubMed  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Google Scholar 

  • Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb Technol 29:478–489

    Article  CAS  Google Scholar 

  • Fredlund E, Blank LM, Schnurer J, Sauer U, Passoth V (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Giffhorn F (2000) Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl Microbiol Biotechnol 54:727–740

    Article  PubMed  CAS  Google Scholar 

  • Harmsen MC, Schuren FH, Moukha SM, van Zuilen CM, Punt PJ, Wessels JG (1992) Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr Genet 22:447–454

    Article  PubMed  CAS  Google Scholar 

  • Henriksson G, Ander P, Pettersson B, Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42:790–796

    Article  CAS  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett 446:49–54

    Article  PubMed  CAS  Google Scholar 

  • Kilaru S, Hoegger PJ, Kues U (2006) The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 50:45–60

    Article  PubMed  CAS  Google Scholar 

  • Kujawa M et al (2007) Properties of pyranose dehydrogenase purified from the litter-degrading fungus Agaricus xanthoderma. FEBS J 274:879–894

    Article  PubMed  CAS  Google Scholar 

  • Leitner C, Volc J, Haltrich D (2001) Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl Environ Microbiol 67:3636–3644

    Article  PubMed  CAS  Google Scholar 

  • Manning K, Wood DA (1983) Production and regulation of extracellular endocellulase by Agaricus bisporus. J Gen Microbiol 129:1839–1847

    CAS  Google Scholar 

  • Mizobuchi M, Frohman LA (1993) Rapid amplification of genomic DNA ends. Biotechniques 15:214–216

    PubMed  CAS  Google Scholar 

  • Morrison SC, Wood DA, Wood PM (1999) Characterization of a glucose 3-dehydrogenase from the cultivated mushroom Agaricus bisporus. Appl Microbiol Biotechnol 51:58–64

    Article  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Oliveira P, Rodeia N, Clemente A, Karmali A (1992) Glucose 2-oxidase production by white rot fungi. In: Kennedy JF, Phillips GO, Williams PA (eds) Lignocellulosics: science, technology, development and use. Ellis Horwood, New York, pp 33–40

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Res 26:1628–1635

    Article  PubMed  CAS  Google Scholar 

  • Stapleton PC, O’Brien MM, O’Callaghan J, Dobson AD (2004) Molecular cloning of the cellobiose dehydrogenase gene from Trametes versicolor and expression in Pichia pastoris. Enzyme Microb Technol 34:55–63

    Article  CAS  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  PubMed  CAS  Google Scholar 

  • Sygmund C et al (2007) Characterization of pyranose dehydrogenase from Agaricus meleagris and its application in the C-2 specific conversion of d-galactose. J Biotechnol. doi:10.1016/j.jbiotec.2007.10.013

  • Tichopad A, Dilger M, Schwarz G, Pfaffl MW (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res 31:e122

    Article  PubMed  Google Scholar 

  • Volc J, Kubatova E, Wood DA, Daniel G (1997) Pyranose 2-dehydrogenase, a novel sugar oxidoreductase from the basidiomycete fungus Agaricus bisporus. Arch Microbiol 167:119–125

    Article  CAS  Google Scholar 

  • Volc J, Kubatova E, Daniel G, Sedmera P, Haltrich D (2001) Screening of basidiomycete fungi for the quinone-dependent sugar C-2/C-3 oxidoreductase, pyranose dehydrogenase, and properties of the enzyme from Macrolepiota rhacodes. Arch Microbiol 176:178–186

    Article  PubMed  CAS  Google Scholar 

  • Zamocky M, Hallberg M, Ludwig R, Divne C, Haltrich D (2004) Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene 338:1–14

    Article  PubMed  CAS  Google Scholar 

  • Zamocky M et al (2006) Cellobiose dehydrogenase—a flavocytochrome from wood-degrading, phytopathogenic and saprotrophic fungi. Curr Protein Pept Sci 7:255–280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) (grant P16836-B11 to CKP), the Ministry of Education, Youth and Sports of the Czech Republic (grants LC545, 6-06-4 and Institutional Research Concept AV0Z50200510, PH and JV), the Austrian Exchange Office (Scientific-Technical Cooperation Austria—Czech Republic, grant 2006/11) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, the Swedish Research Council, the CF Lundströms Stiftelse, and the Carl Tryggers Stiftelse (CD). We thank M. Zamocky, Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, for help with the phylogenetic analysis, and K. Brunner, Department of Chemical Engineering, Technical University Vienna, for technical help with the real-time transcript analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens K. Peterbauer.

Additional information

Communicated by U. Kües.

R. Kittl and C. Sygmund contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittl, R., Sygmund, C., Halada, P. et al. Molecular cloning of three pyranose dehydrogenase-encoding genes from Agaricus meleagris and analysis of their expression by real-time RT-PCR. Curr Genet 53, 117–127 (2008). https://doi.org/10.1007/s00294-007-0171-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0171-9

Keywords

Navigation