Skip to main content

Advertisement

Log in

Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In order to study pathogenic mechanisms of the plant pathogen Ascochyta rabiei, conditions for efficient transformation using Agrobacterium-mediated transformation were investigated. Hygromycin B resistance (hph) was superior to geneticin resistance (nptII) for selecting transformants, and the hph gene was more efficiently expressed by the Aspergillus nidulans trpC promoter than by the Cauliflower mosaic virus 35S promoter CaMV35S. Co-cultivation on solid media for 72 h was optimal for generating transformants, but increasing the ratio of bacterial cells to conidia did not affect transformation efficiency. All hygromycin B-resistant transformants carried transfer-DNA (T-DNA) as determined by polymerase chain reaction (PCR) and the T-DNA integrations appeared to be random and in single copy as detected by Southern hybridization. Transformants remained resistant to hygromycin B in the absence of selection. Variations in colony morphology were observed in the presence of hygromycin B under different culture conditions, and a variety of altered phenotypes including reduced virulence were observed among 550 transformants. Inverse PCR was more efficient than TAIL-PCR in identifying flanking genomic sequences from T-DNA borders, and the possible causes are discussed. This transformation technique and recovery of flanking DNA using inverse PCR will provide a useful tool for genetic studies of A. rabiei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abuodeh R, Orbach M, Mandel M, Das A, Galgiani J (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110

    Article  PubMed  CAS  Google Scholar 

  • Bahti P, Strange R (2004) Chemical and biochemical reactions of solanapyrone A, a toxin from the chickpea pathogen, Ascochyta rabiei (Pass.) Labr. Physiol Mol Plant Pathol 64:9–15

    Article  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas P (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    PubMed  CAS  Google Scholar 

  • Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA 93:15272–15275

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Nelson R, Sherwood J (1996) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze–thaw transformation and drug selection. Biotechniques 16:664–668

    CAS  Google Scholar 

  • Chen W, Coyne C, Peever T, Muehbauer FJ (2004) Characterization of chickpea differentials for Ascochyta blight and identification of resistance sources for Ascochyta rabiei. Plant Pathol 53:759–769

    Article  Google Scholar 

  • Chen W, McPhee KE, Muehlbauer FJ (2005) Use of a mini-dome bioassay and grafting to study chickpea resistance to Ascochyta blight. J Phytopathol 153: 579–587

    Article  Google Scholar 

  • Combier J, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett 220(1):141–148

    Article  PubMed  CAS  Google Scholar 

  • Dickman MB, Podila GK, Kolattukeuy PE (1989) Insertions of cutinase gene into a wound pathogen enables it to infect host. Nature 342:446–448

    Article  CAS  Google Scholar 

  • de Groot M, Bundock P, Hooykaas P, Beijersbergen A (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839–842

    Article  PubMed  Google Scholar 

  • Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y (2004) Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J lnvert Pathol 85:18–24

    Article  CAS  Google Scholar 

  • Figurski D, Helinski D (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Gardner R, Nelson Z, Gottschling D (2005) Degradation-mediated protein quality control in the nucleus. Cell 120:803–815

    Article  PubMed  CAS  Google Scholar 

  • Goodwin D, Lee S (1993) Microwave miniprep of total genomic DNA from fungi, plants, protists and animals for PCR. Biotechniques 15:441–444

    Google Scholar 

  • Gouka R, Gerk C, Hooykaas P, Bundock P, Musters W, Verrips C, deGroot M (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17:598–601

    Article  PubMed  CAS  Google Scholar 

  • Hamid K, Strange R (2000) Phytotoxicity of solanapyrones A and B produced by the chickpea pathogen Ascochyta rabiei (Pass.) Labr. and the apparent metabolism of solanapyrone A by chickpea tissues. Physiol Mol Plant Pathol 56:235–244

    Article  CAS  Google Scholar 

  • Höhl B, Pfautsch W, Barz W (1990) Histology of disease development on resistant and susceptible cultivars of chickpea (Cicer arietinum L.) inoculated with spores of Ascochyta rabiei. J Phytopathol 129:31–45

    Google Scholar 

  • Idnurm A, Howlett BJ (2001) Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol 2(4):241–255

    Article  CAS  Google Scholar 

  • Köhler G, Linkert C, Barz W (1995) Infection studies of Cicer arietinum (L.) with GUS-(E.coli β-glucuronidase) transformed Ascochyta rabiei strains. J Phytopathol 143:589–595

    Google Scholar 

  • Kimura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 175:4427–4435

    PubMed  CAS  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98:1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol 9:963–967

    Article  CAS  Google Scholar 

  • Lee S, Taylor J (1990) Isolation of DNA from fungal mycelia and single spores. In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 282–287

    Google Scholar 

  • Lichtenstein C, Draper J (1986) DNA cloning: a practical approach. IRL, Oxford

    Google Scholar 

  • Maier F, Schäfer W (1999) Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol Chem 380:855–864

    Article  PubMed  CAS  Google Scholar 

  • Michielse C, Hooykaas P, van den Hondel C, Ram A (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  PubMed  CAS  Google Scholar 

  • Mullins E, Chen X, Romaine R, Raina R, Geiser D, Kang S (2000) Agrobacterium-mediated transfromation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transformation. Phytopathology 91:173–180

    Article  Google Scholar 

  • Mullins E, Kang S (2001) Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life Sci 58:2043–2052

    Article  PubMed  CAS  Google Scholar 

  • Namiki F, Matsunga M, Okuda M, Inoue I, Nishi K, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant Microbe Int 14:580–584

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Plainview

    Google Scholar 

  • Sullivan T, Rooney P, Klein B (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell 1:895–905

    Article  PubMed  CAS  Google Scholar 

  • Sun C-B, Kong Q-L, Xu W-S (2002) Efficient transformation of Penicillium chrysogenum mediated by Agrobacterium tumefaciens LBA4404 for cloning of Vitreoscilla hemoglobin gene. J Biotechnol 5:21–28

    Google Scholar 

  • Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi (2004) Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Genet Plant Pathol 70:93–96

    Article  CAS  Google Scholar 

  • Taketo A (2004) DNA transfection of Escherichia coli by electroporation. Biochim Biophys Acta 949:318–324

    Google Scholar 

  • Tanguay P, Breuil C (2003) Transforming the sapstaining fungus Ophiostoma piceae with Agrobacterium tumefaciens. Can J Microbiol 49:301–304

    Article  PubMed  CAS  Google Scholar 

  • Tenhaken R, Arnemann M, Kohler K, Barz W (1997) Characterization and cloning of cutinase from Ascochyta rabiei. Verlag Z Naturforsch 52c:197–208

    Google Scholar 

  • Vijn I, Govers F (2003) Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol 4:459–467

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Chen.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D., Chen, W. Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation. Curr Genet 49, 272–280 (2006). https://doi.org/10.1007/s00294-005-0048-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0048-8

Keywords

Navigation