Skip to main content
Log in

Salt-dependent expression of ammonium assimilation genes in the halotolerant yeast, Debaryomyces hansenii

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Debaryomyces hansenii is adapted to grow in saline environments, accumulating high intracellular Na+ concentrations. Determination of the DhGDH1-encoded NADP-glutamate dehydrogenase enzymatic activity showed that it increased in a saline environment. Thus, it was proposed that, in order to overcome Na+ inhibition of enzyme activity, this organism possessed salt-dependent mechanisms which resulted in increased activity of enzymes pertaining to the central metabolic pathways. However, the nature of the mechanisms involved in augmented enzyme activity were not analyzed. To address this matter, we studied the expression of DhGDH1 and DhGLN1 encoding glutamine synthetase, which constitute the central metabolic circuit involved in ammonium assimilation. It was found that: (1) expression of DhGDH1 is increased when D. hansenii is grown in the presence of high NaCl concentrations, while that of DhGLN1 is reduced, (2) DhGDH1 expression in Saccharomyces cerevisiae takes place in a GLN3- and HAP2,3-dependent manner and (3) salt-dependent DhGDH1 and DhGLN1 expression involves mechanisms which are limited to D. hansenii and are not present in S. cerevisiae. Thus, salt-dependent regulation of the genes involved in central metabolic pathways could form part of a strategy leading to the ability to grow under hypersaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alba-Lois L, Segal C, Rodarte B, Valdés-López V, DeLuna A, Cárdenas R (2004) NADP-glutamate dehydrogenase activity is increased under hyperosmotic conditions in the halotolerant yeast Debaryomyces hansenii. Curr Microbiol 48:68–72

    Article  Google Scholar 

  • Alder L, Gustafsson L (1980) Polyhydric alcohol production and intracellular aminoacid pool in relation to halotolerance of yeast Debaryomyces hansenii. Arch Microbiol 124:123–130

    CAS  Google Scholar 

  • Almagro A, Prista C, Benito B, Loureiro-Dias MC, Ramos J (2001) Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 183:3251–3255

    Article  Google Scholar 

  • Avendaño A, DeLuna A, Olivera H, Valenzuela L, González A (1997) GDH3 encodes a glutamate dehydrogenase isozyme a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol 179:5594–5597

    CAS  PubMed  Google Scholar 

  • Bansal PK, Mondal AK (2000) Yeast sequencing report. Isolation and sequence of the HOG1 homologue from Debaryomyces hansenii by complementation of the hog1Δ strain of Saccharomyces cerevisiae. Yeast 16:81–88

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Benjamin PM, Wu JI, Mitchell AP, Magasanik B (1989) Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol Gen Genet 217:370–377

    Google Scholar 

  • Blinder D, Magasanik B (1995) Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of GLN3 gene. J Bacteriol 177:4190–4193

    Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    CAS  PubMed  Google Scholar 

  • Botsford JL, Alvarez M, Hernandez R, Nichols R (1994) Accumulation of glutamate by Salmonella typhimurium in response to osmotic stress. Appl Environ Microbiol 60:2568–2574

    Google Scholar 

  • Coffman JA, Rai R, Cooper TG (1995) Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J Bacteriol 177:6910–6918

    Google Scholar 

  • Cogoni C, Valenzuela L, González-Halphen D, Olivera H, Macino G, Ballario P, González A (1995) Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J Bacteriol 177:792–798

    Google Scholar 

  • DeLuna A, Avendaño A, Riego L, González A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae: purification, kinetic properties and physiological roles. J Biol Chem 276:43775–43783

    Article  Google Scholar 

  • Doherthy D (1970) L-glutamate dehydrogenases (yeast). Methods Enzymol 17:850–856

    Google Scholar 

  • Forsburg SL, Guarente L (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 8:1166–1178

    Google Scholar 

  • Gash AP, Werner-Washburne M, (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181–192

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Davila G, Calva E (1985) Cloning of a DNA sequence that complements glutamine auxotrophy in Saccharomyces cerevisiae. Gene 36:123–129

    Article  Google Scholar 

  • González-Hernández JC, Cárdenas-Monroy CA, Peña A (2004) Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast 21:403–412

    Article  PubMed  Google Scholar 

  • Govind NS, McNally KL, Trench RK (1992) Isolation and sequence analysis of the small subunit ribosomal RNA gene from the euryhaline yeast Debaryomyces hansenii. Curr Genet 22:191–195

    Article  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP- kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    CAS  PubMed  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeast. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  Google Scholar 

  • Holzer H, Schneider S (1957) Anreicherung und Trennung einer DPN-spezifischen und einer TPN-spezifischen Glutaminosaure Dehydrogenase aus Hefe. Biochem Z 329:361–367

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  • Lages F, Silva-Graca M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeast: a study of 42 species. Microbiology 145:2577–2585

    CAS  PubMed  Google Scholar 

  • Lépingle A, Casaregola S, Neuvéglise C, Bon E, Nguyen H, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 14. Debaryomyces hansenii var. hansenii. FEBS Lett 487:82–86

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lucas C, Da Costa M, Van Uden N (1990) Osmoregulatory active sodium-glycerol co-transport in the halotolerant yeast Debaryomyces hansenii. Yeast 6:187–191

    Google Scholar 

  • Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2:827–829

    Article  Google Scholar 

  • Minehart PL, Magasanik B (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 11:6216–6228

    CAS  PubMed  Google Scholar 

  • Myers AM, Tzagaloff A, Kinney DM, Lusty CJ (1986) Yeast shuttle integrative vectors with multiple cloning sites suitable for constructions of lacZ fusions. Gene 45:299–310

    Article  Google Scholar 

  • Nandineni MR, Laishram RS, Gowrishankar J (2004) Osmosensitivity associated with insertions in argP (iciA) or glnE in glutamate synthase-deficient mutants of Escherichia coli. J Bacteriol 186:6391–6399

    Article  Google Scholar 

  • Nilsson A, Adler L (1990) Purification and characterization of glycerol-3-phosphate dehydrogenase (NAD+) in the salt-tolerant yeast Debaryomyces hansenii. Biochim Biophys Acta 1034:180–185

    Google Scholar 

  • Norkrans B (1966) Studies on marine occurring yeasts; growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54:374–392

    Article  Google Scholar 

  • Olesen J, Hahn S, Guarente L (1987) Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell 51:953–961

    Article  CAS  PubMed  Google Scholar 

  • Perez-Castineira JR, Lopez-Marques RL, Villalba JM, Losada M, Serrano A (2002) Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+ -translocating pyrophosphatases. Proc Natl Acad Sci USA 25:15914–15919

    Article  Google Scholar 

  • Prior C, Potier S, Souciet JL, Sychrová H (1996) Characterization of the NHA1 gene encoding a Na+/H+ -antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387:89–93

    Article  CAS  PubMed  Google Scholar 

  • Proft M, Serrano R (1999) Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol 19:537–546

    Google Scholar 

  • Rep M, Albertyn J, Thevelein JM, Prior BA, Hohmann S (1999) Different signaling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145:715–727

    CAS  PubMed  Google Scholar 

  • Riego L, Avendaño A, DeLuna A, Rodríguez E, González A (2002) GDH1 expression is regulated by GLN3, GCN4 and HAP4 under respiratory growth. Biochem Biophys Res Com 293:79–85

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sherman D, Durrens P, Beyne E, Nikolski M, Souciet JL (2004) Génolevures: comparative genomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acid Res 32:D315–D318

    Article  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Stanbrough M, Magasanik B (1996) Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J Bacteriol 178:2465–2468

    Google Scholar 

  • Struhl K, Davis RW (1981) Transcription of the HIS3 gene region in Saccharomyces cerevisiae. J Mol Biol 152:535–552

    Article  Google Scholar 

  • Thomé PE, Trench RK (1999) Osmoregulation and the genetic induction of glycerol-3-phosphate dehydrogenase by NaCl in the euryhaline yeast Debaryomyces hansenii. Mar Biotechnol 1:230–238

    Google Scholar 

  • Valenzuela L, Ballario P, Aranda C, Filetici P, González A (1998) Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J Bacteriol 180:3533–3540

    Google Scholar 

  • Woolfolk CA, Shapiro B, Stadtman ER (1966) Regulation of glutamine synthetase. I Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys 116:177–192

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (UNAM; IN221103-2), by the Consejo Nacional de Ciencia y Tecnología (CONACYT; U40506Q) and by the CONACYT-CNR cooperation agreement. We acknowledge F. Bastarrachea and A. Peña for critical review of the manuscript. We are grateful to L. Ongay, G. Codiz and M. Mora (Unidad de Biología Molecular, Instituto de Fisiología Celular, UNAM) for DNA sequencing and synthesis of deoxyoligonucleotides. C.G. received a fellowship from the Consejo Nacional de Ciencia y Tecnología (119373) and a grant from the Dirección General de Estudios de Posgrado, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia González.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, C.A., Aranda, C., DeLuna, A. et al. Salt-dependent expression of ammonium assimilation genes in the halotolerant yeast, Debaryomyces hansenii. Curr Genet 47, 163–171 (2005). https://doi.org/10.1007/s00294-004-0560-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0560-2

Keywords

Navigation