Skip to main content
Log in

How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyces cerevisiae

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

DNA-damaging agents constantly challenge cellular DNA; and efficient DNA repair is therefore essential to maintain genome stability and cell viability. Several DNA repair mechanisms have evolved and these have been shown to be highly conserved from bacteria to man. DNA repair studies were originally initiated in very simple organisms such as Escherichia coli and Saccharomyces cerevisiae, bacteria being the best understood organism to date. As a consequence, bacterial DNA repair genes encoding proteins with well characterized functions have been transferred into higher organisms in order to increase repair capacity, or to complement repair defects, in heterologous cells. While indicating the contribution of these repair functions to protection against the genotoxic effects of DNA-damaging agents, heterologous expression studies also highlighted the role of the DNA lesions that are substrates for such processes. In addition, bacterial DNA repair-like functions could be identified in higher organisms using this approach. We heterologously expressed three well characterized E. coli repair genes in S. cerevisiae cells of different genetic backgrounds: (1) the ada gene encoding O6-methylguanine DNA-methyltransferase, a protein involved in the repair of alkylation damage to DNA, (2) the recA gene encoding the main recombinase in E. coli and (3) the nth gene, the product of which (endonuclease III) is responsible for the repair of oxidative base damage. Here, we summarize our results and indicate the possible implications they have for a better understanding of particular DNA repair processes in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M, Sundheim O, Bjørås M, Slupphaug G, Seeberg E, Krokan HE (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863

    Article  CAS  PubMed  Google Scholar 

  • Aboussekhra A, Chanet R, Adjiri A, Fabre F (1992) Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol Cell Biol 12:3224–3234

    CAS  PubMed  Google Scholar 

  • Alseth I, Eide L, Pirovano M, Rognes T, Seeberg E, Bjørås M (1999) The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol 19:3779–3787

    CAS  PubMed  Google Scholar 

  • Asahara H, Wistort PM, Bank JF, Bakerian RH, Cunningham RP (1989) Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 28:4444–4449

    CAS  PubMed  Google Scholar 

  • Augeri L, Lee YM, Barton AB, Doetsch PW (1997) Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III. Biochemistry 36:721–729

    Article  CAS  PubMed  Google Scholar 

  • Aylon Y, Kupiec M (2004) New insights into the mechanism of homologous recombination in yeast. Mutat Res 566:231–248

    CAS  PubMed  Google Scholar 

  • Bailly V, Verly WG (1987) Escherichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst. Biochem J 242:565–572

    CAS  PubMed  Google Scholar 

  • Basile G, Aker M, Mortimer RK (1992) Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol Cell Biol 12:3235–3246

    CAS  PubMed  Google Scholar 

  • Baumann P, West SC (1998) Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci 23:247–251

    Article  CAS  PubMed  Google Scholar 

  • Beranek DT, Weis CC, Swenson DH (1980) A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography. Carcinogenesis 1:595–606

    CAS  PubMed  Google Scholar 

  • Bi B, Rybalchenko N, Golub EI, Radding CM (2004) Human and yeast Rad52 proteins promote DNA strand exchange. Proc Natl Acad Sci USA 101:9568–9572

    Article  CAS  PubMed  Google Scholar 

  • Bianco PR, Tracy RB, Kowalczykowski SC (1998) DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci 3:D570–D603

    CAS  PubMed  Google Scholar 

  • Boiteux S (1993) Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two DNA glycosylases that repair oxidative damage in DNA. J Photochem Photobiol B 19:87–96

    Article  CAS  PubMed  Google Scholar 

  • Breimer LH, Lindahl T (1984) DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J Biol Chem 259:5543–5548

    CAS  PubMed  Google Scholar 

  • Brendel M, Grey M, Maris AF, Hietkamp J, Fesus Z, Pich CT, Dafre AL, Schmidt M, Eckardt-Schupp F, Henriques JA (1998) Low glutathione pools in the original pso3 mutant of Saccharomyces cerevisiae are responsible for its pleiotropic sensitivity phenotype. Curr Genet 33:4–9

    Article  CAS  PubMed  Google Scholar 

  • Brendel M, Henriques JA (2001) The pso mutants of Saccharomyces cerevisiae comprise two groups: one deficient in DNA repair and another with altered mutagen metabolism. Mutat Res 489:79–96

    CAS  PubMed  Google Scholar 

  • Brendel M, Bonatto D, Strauss M, Revers LF, Pungartnik C, Saffi J, Henriques JA (2003) Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res 544:179–193

    CAS  PubMed  Google Scholar 

  • Brennand J, Margison GP (1986) Reduction of the toxicity and mutagenicity of alkyklation agents in mammalian cells harbouring the E. coli alkyltransferase gene. Proc Natl Acad Sci USA 83:6292–6296

    CAS  PubMed  Google Scholar 

  • Brozmanová J, Kleibl K, Vlčková V, Škorvaga M, Černáková L, Margison GP (1990) Expression of the E. coli ada gene in yeast protects against the toxic and mutagenic effects of N-methyl-N′-nitro-N-nitrosoguanidine. Nucleic Acids Res 18:331–335

    PubMed  Google Scholar 

  • Brozmanová J, Černáková L, Vlčková V, Duraj J, Fridrichová I (1991) The Escherichia coli recA gene increases resistance of the yeast Saccharomyces cerevisiae to ionizing and ultraviolet radiation. Mol Gen Genet 227:473–480

    Article  PubMed  Google Scholar 

  • Brozmanová J, Vlčková V, Chovanec M, Černáková L, Škorvaga M, Margison GP (1994) Expression of the E. coli ada gene in S. cerevisiae provides cellular resistance to N-methyl-N′-nitro-N-nitrosoguanidine in rad6 but not in rad52 mutants. Nucleic Acids Res 22:5717–5722

    PubMed  Google Scholar 

  • Brozmanová J, Dudáš A, Henriques JA (2001a) Repair of oxidative DNA damage—an important factor reducing cancer risk. Neoplasma 48:85–93

    PubMed  Google Scholar 

  • Brozmanová J, Vlčková V, Farkašová E, Dudáš A, Vlasáková D, Chovanec M, Mikulovská Ž, Fridrichová I, Saffi J, Henriques JA (2001b) Increased DNA double strand breakage is responsible for sensitivity of the pso3-1 mutant of Saccharomyces cerevisiae to hydrogen peroxide. Mutat Res 485:345–355

    PubMed  Google Scholar 

  • Bruner SD, Nash HM, Lane WS, Verdine GL (1998) Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr Biol 8:393–403

    Article  CAS  PubMed  Google Scholar 

  • Burgess S, Jaruga P, Dodson ML, Dizdaroglu M, Lloyd RS (2002) Determination of active site residues in Escherichia coli endonuclease VIII. J Biol Chem 277:2938–2944

    Article  CAS  PubMed  Google Scholar 

  • Camerini-Otero RD, Hsieh P (1995) Homologous recombination proteins in prokaryotes and eukaryotes. Annu Rev Genet 29:509–552

    Article  CAS  PubMed  Google Scholar 

  • Chenevert JA, Naumovski L, Schultz RA, Friedberg EC (1986) Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4. Mol Gen Genet 203:163–171

    CAS  PubMed  Google Scholar 

  • Cheng SC, Tarn WY, Tsao TY, Abelson J (1993) PRP19: a novel spliceosomal component. Mol Cell Biol 13:1876–1882

    CAS  PubMed  Google Scholar 

  • Clark AJ, Margulies AD (1965) Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc Natl Acad Sci USA 53:451–459

    CAS  PubMed  Google Scholar 

  • Clarke ND, Kvaal M, Seeberg E (1984) Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Mol Gen Genet 197:368–372

    CAS  PubMed  Google Scholar 

  • Cooper AJ, Waters R (1987) A complex pattern of sensitivity to simple monofunctional alkylating agents exists amongst the rad mutants of Saccharomyces cerevisiae. Mol Gen Genet 209:142–148

    CAS  PubMed  Google Scholar 

  • Cunningham RP, Weiss B (1985) Endonuclease III (nth) mutants of Escherichia coli. Proc Natl Acad Sci USA 82:474–478

    CAS  PubMed  Google Scholar 

  • Cunningham RP, Asahara H, Bank JF, Scholes CP, Salerno JC, Surerus K, Munck E, McCracken J, Peisach J, Emptage MH (1989) Endonuclease III is an iron–sulfur protein. Biochemistry 28:4450–4455

    CAS  PubMed  Google Scholar 

  • Cunningham RP, Ahern H, Xing D, Thayer MM, Tainer JA (1994) Structure and function of Escherichia coli endonuclease III. Ann NY Acad Sci 726:215–222

    CAS  PubMed  Google Scholar 

  • Černáková L, Fridrichová I, Piršel M, Kleibl K, Duraj J, Brozmanová J (1991) Expression of the Escherichia coli recA gene in the yeast Saccharomyces cerevisiae. Biochimie 73:285–288

    Article  PubMed  Google Scholar 

  • de Andrade HH, Marques EK, Schenberg AC, Henriques JA (1989) The PSO4 gene is responsible for an error-prone recombinational DNA repair pathway in Saccharomyces cerevisiae. Mol Gen Genet 217:419–426

    PubMed  Google Scholar 

  • Demple B, Linn S (1980) DNA N-glycosylases and UV repair. Nature 287:203–208

    CAS  PubMed  Google Scholar 

  • Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M (2003) Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage. Mutat Res 531:109–126

    CAS  PubMed  Google Scholar 

  • Doetsch PW, Morey NJ, Swanson RL, Jinks-Robertson S (2001) Yeast base excision repair: interconnections and networks. Prog Nucleic Acid Res Mol Biol 68:29–39

    CAS  PubMed  Google Scholar 

  • Dudáš A, Marková E, Vlasáková D, Kolman A, Bartošová Z, Brozmanová J, Chovanec M (2003) The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyces cerevisiae rad52 mutant cells. Yeast 20:389–396

    Article  PubMed  Google Scholar 

  • Dudáš A, Chovanec M (2004) DNA double-strand break repair by homologous recombination. Mutat Res 566:131–167

    PubMed  Google Scholar 

  • Eide L, Bjørås M, Pirovano M, Alseth I, Berdal KG, Seeberg E (1996) Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Proc Natl Acad Sci USA 93:10735–10740

    Article  CAS  PubMed  Google Scholar 

  • Erdemir T, Bilican B, Oncel D, Goding CR, Yavuzer U (2002) DNA damage-dependent interaction of the nuclear matrix protein C1D with Translin-associated factor X (TRAX). J Cell Sci 115:207–216

    CAS  PubMed  Google Scholar 

  • Falnes PO, Johansen RF, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419:178–182

    Article  CAS  PubMed  Google Scholar 

  • Farkašová E, Chovanec M, Vlasáková D, Vlčková V, Margison GP, Brozmanová J (2000) Effect of stable integration of the Escherichia coli ada gene on the sensitivity of Saccharomyces cerevisiae to the toxic and mutagenic effects of alkylating agents. Environ Mol Mutagen 35:66–69

    Article  PubMed  Google Scholar 

  • Fridrichová I, Kovařík A, Rosskopfová O (1992) Immunological quantification of RecA protein in cell extracts of E. coli after exposure to chemical mutagens or UV radiation. Folia Microbiol 37:24–30

    Google Scholar 

  • Friedberg EC (1988) Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev 52:70–102

    CAS  PubMed  Google Scholar 

  • Friedberg EC (1991) Eukaryotic DNA repair: glimpses through the yeast Saccharomyces cerevisiae. Bioessays 13:91–95

    Google Scholar 

  • Friedberg EC, Siede W, Cooper AJ (1992) Cellular responses to DNA damage in yeast. In: Broach JR (ed) The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 147–192

    Google Scholar 

  • Friedberg EC (2000) Biological responses to DNA damage: a perspective in the new millennium. Cold Spring Harb Symp Quant Biol 65:593–602

    CAS  PubMed  Google Scholar 

  • Game JC (2000) The Saccharomyces repair genes at the end of the century. Mutat Res 451:277–293

    CAS  PubMed  Google Scholar 

  • Girard PM, Boiteux S (1997) Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae. Biochimie 79:559–566

    Article  CAS  PubMed  Google Scholar 

  • Gossett J, Lee K, Cunningham RP, Doetsch PW (1988) Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III. Biochemistry 27:2629–2634

    CAS  PubMed  Google Scholar 

  • Goth-Goldstein R, Johnson PL (1990) Repair of alkylation damage in Saccharomyces cerevisiae. Mol Gen Genet 221:353–357

    Article  CAS  PubMed  Google Scholar 

  • Gotzmann J, Gerner C, Meissner M, Holzmann K, Grimm R, Mikulitz W, Sauermann G (2000) hNMP 200: a novel human common nuclear matrix protein combining structural and regulatory functions. Exp Cell Res 261:166–179

    Article  CAS  PubMed  Google Scholar 

  • Grey M, Dusterhoft A, Henriques JA, Brendel M (1996) Allelism of PSO4 and PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae. Nucleic Acids Res 24:4009–4014

    Article  CAS  PubMed  Google Scholar 

  • Gros L, Saparbaev MK, Laval J (2002) Enzymology of the repair of free radicals-induced DNA damage. Oncogene 21:8905–8925

    Article  CAS  PubMed  Google Scholar 

  • Harrison L, Škorvaga M, Cunningham RP, Hendry JH, Margison GP (1992) Transfection of the Escherichia coli nth gene into radiosensitive Chinese hamster cells: effects on sensitivity to radiation, hydrogen peroxide and bleomycine sulfate. Radiat Res 132: 30–39

    CAS  PubMed  Google Scholar 

  • Hays SL, Firmenich AA, Berg P (1995) Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Natl Acad Sci USA 92:6925–6929

    CAS  PubMed  Google Scholar 

  • Henriques JA, Vicente EJ, Leandro da Silva KV, Schenberg AC (1989) PSO4: a novel gene involved in error-prone repair in Saccharomyces cerevisiae. Mutat Res 218:111–124

    CAS  PubMed  Google Scholar 

  • Henriques JA, Brendel M (1990) The role of PSO and SNM genes in DNA repair of the yeast Saccharomyces cerevisiae. Curr Genet 18:387–393

    CAS  PubMed  Google Scholar 

  • Henriques JA, Brozmanová J, Brendel M (1997) Role of PSO genes in the repair of photoinduced interstrand cross-links and photooxidative damage in the DNA of the yeast Saccharomyces cerevisiae. J Photochem Photobiol B 39:185–196

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  CAS  Google Scholar 

  • Jazayeri A, Jackson SP (2002) Screening the yeast genome for new DNA-repair genes. Genome Biol 3:1009

    Article  Google Scholar 

  • Jiang D, Hatahet Z, Melamede RJ, Kow YW, Wallace SS (1997) Characterization of Escherichia coli endonuclease VIII. J Biol Chem 272:32230–32239

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Sanchez A, Cerda-Olmedo E (1975) Mutation and DNA replication in Escherichia coli treated with low concentrations of N-methyl-N′-nitro-N-nitrosoguanidine. Mutat Res 28:337–345

    CAS  PubMed  Google Scholar 

  • Karlin S, Brocchieri L (1996) Evolutionary conservation of recA genes in relation to protein structure and function. J Bacteriol 178:1881–1894

    CAS  PubMed  Google Scholar 

  • Kat A, Thilly WG, Fang WH, Longley MJ, Li GM, Modrich P (1993) An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci USA 90:6424–6428

    CAS  PubMed  Google Scholar 

  • Katcher HL, Wallace SS (1983) Characterization of the Escherichia coli X-ray endonuclease, endonuclease III. Biochemistry 22:4071–4081

    CAS  PubMed  Google Scholar 

  • Kido M, Yoneda Y, Nakanishi M, Uchida T, Okada Y (1992) Escherichia coli RecA protein modified with a nuclear location signal binds to chromosomes in living mammalian cells. Exp Cell Res 198:107–114

    CAS  PubMed  Google Scholar 

  • Kleibl K (2002) Molecular mechanisms of adaptive response to alkylating agents in Escherichia coli and some remarks on O6 -methylguanine DNA-methyltransferase in other organisms. Mutat Res 512:67–84

    CAS  PubMed  Google Scholar 

  • Kow YW, Wallace SS (1987) Mechanism of action of Escherichia coli endonuclease III. Biochemistry 26:8200–8206

    CAS  PubMed  Google Scholar 

  • Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465

    CAS  PubMed  Google Scholar 

  • Krejči L, Damborsky J, Thomsen B, Duno M, Bendixen C (2001) Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol Cell Biol 21:966–976

    Article  CAS  PubMed  Google Scholar 

  • Langeveld SA, Yasui A, Eker APM (1985) Expression of an Escherichia coli phr gene in the yeast Saccharomyces cerevisiae. Mol Gen Genet 199: 396–400

    CAS  PubMed  Google Scholar 

  • Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y (1988) Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem 57:133–157

    Article  CAS  PubMed  Google Scholar 

  • Little JW, Edmiston SH, Pacelli LZ, Mount DW (1980) Cleavage of the Escherichia coli LexA protein by the RecA protease. Proc Natl Acad Sci USA 77:3225–3229

    CAS  PubMed  Google Scholar 

  • Maga JA, McEntee K (1985) Response of S. cerevisiae to N-methyl-N′-nitro-N-nitrosoguanidine: mutagenesis, survival and DDR gene expression. Mol Gen Genet 200:313–321

    CAS  PubMed  Google Scholar 

  • Mahajan KN, Mitchell BS (2003) Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci USA 100:10746–10751

    Article  CAS  PubMed  Google Scholar 

  • Melamede RJ, Hatahet Z, Kow YW, Ide H, Wallace SS (1994) Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry 33:1255–1264

    CAS  PubMed  Google Scholar 

  • Memisoglu A, Samson L (1996) DNA repair functions in heterologous cells. Crit Rev Biochem Mol Biol 31:405–447

    CAS  PubMed  Google Scholar 

  • Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res 451:39–51

    CAS  PubMed  Google Scholar 

  • Morais MA, Brozmanová J, Benfato MS, Duraj J, Vlčková V, Henriques JA (1994) The E. coli recA gene can restore the defect in mutagenesis of the pso4-1 mutant of S. cerevisiae. Mutat Res 314:209–220

    CAS  PubMed  Google Scholar 

  • Morais MA, Vicente EJ, Brozmanová J, Schenberg AC, Henriques JA (1996) Further characterization of the yeast pso4-1 mutant: interaction with rad51 and rad52 mutants after photoinduced psoralen lesions. Curr Genet 29:211–218

    Article  PubMed  Google Scholar 

  • Morais MA, Vlčková V, Fridrichová I, Slaninová M, Brozmanová J (1998) Effect of bacterial recA expression on DNA repair in the rad51 and rad52 mutants of Saccharomyces cerevisiae. Genet Mol Biol 21:3–9

    CAS  Google Scholar 

  • Ogawa T, Wabiko H, Tsurimoto T, Horii T, Masukata H, Ogawa H (1979) Characteristics of purified RecA protein and the regulation of its synthesis in vivo. Cold Spring Harb Symp Quant Biol 43:909–915

    CAS  PubMed  Google Scholar 

  • Polakowska R, Perozzi G, Prakash L (1986) Alkylation mutagenesis in Saccharomyces cerevisiae: lack of evidence for an adaptive response. Curr Genet 10:647–655

    CAS  PubMed  Google Scholar 

  • Potter PM, Wilkinson MC, Fitton J, Carr FJ, Brennand J, Cooper DP, Margison GP (1987) Characterisation and nucleotide sequence of ogt, the O6 -alkylguanine-DNA-alkyltransferase gene of E. coli. Nucleic Acids Res 15:9177–9193

    CAS  PubMed  Google Scholar 

  • Radman M (1976) An endonuclease from Escherichia coli that introduces single polynucleotide chain scissions in ultraviolet-irradiated DNA. J Biol Chem 251:1438–1445

    CAS  PubMed  Google Scholar 

  • Reiss B, Klemm M, Kosak H, Schell J (1996) RecA protein stimulates homologous recombination in plants. Proc Natl Acad Sci USA 93:3094–3098

    Article  CAS  PubMed  Google Scholar 

  • Reiss B, Kosak H, Klemm M, Schell J (1997) Targeting of a functional Escherichia coli RecA protein to the nucleus of plant cells. Mol Gen Genet 253:695–702

    Article  CAS  PubMed  Google Scholar 

  • Reiss B, Schubert I, Kopchen K, Wendeler E, Schell J, Puchta H (2000) RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc Natl Acad Sci USA 97:3358–3363

    Article  CAS  PubMed  Google Scholar 

  • Resnick MA, Cox BS (2000) Yeast as an honorary mammal. Mutat Res 451:1–11

    CAS  PubMed  Google Scholar 

  • Revers LF, Cardone JM, Bonatto D, Saffi J, Grey M, Feldmann H, Brendel M, Henriques JA (2002) Thermoconditional modulation of the pleiotropic sensitivity phenotype by the Saccharomyces cerevisiae PRP19 mutant allele pso4-1. Nucleic Acids Res 30:4993–5003

    Article  CAS  PubMed  Google Scholar 

  • Roberts JW, Roberts CW, Craig NL, Phizicky EM (1979) Activity of the Escherichia coli recA-gene product. Cold Spring Harb Symp Quant Biol 43:917–920

    CAS  PubMed  Google Scholar 

  • Roca AI, Cox MM (1997) RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol 56:129–223

    CAS  PubMed  Google Scholar 

  • Roche H, Gietz RD, Kunz BA (1993) Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependance on the REV3 gene product, a putative nonessential DNA polymerase. Genetics 140:443–456

    Google Scholar 

  • Saffhill R, Margison GP, O’Connor PJ (1985) Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta 823:111–145

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Uraki F, Nakajima S, Asaeda A, Ono K, Kubo K, Yamamoto K (1997) Characterization of endonuclease III (nth) and endonuclease VIII (nei) mutants of Escherichia coli K-12. J Bacteriol 179:3783–3785

    CAS  PubMed  Google Scholar 

  • Samson L, Cairns J (1977) A new pathway for DNA repair in Escherichia coli. Nature 267:281–283

    CAS  PubMed  Google Scholar 

  • Samson LD (1992) The repair of DNA alkylation damage by methyltransferases and glycosylases. Essays Biochem 27:69–78

    CAS  PubMed  Google Scholar 

  • Samson L, Derfler B, Waldstein EA (1986) Suppression of human DNA alkylation DNA repair defects by Escherichia coli DNA-repair genes. Proc Natl Acad Sci USA 83: 5607–5610

    CAS  PubMed  Google Scholar 

  • Sassanfar M, Samson L (1990) Identification and preliminary characterization of an O6 -methylguanine DNA repair methyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem 265:20–25

    CAS  PubMed  Google Scholar 

  • Sassanfar M, Dosanjh MK, Essigmann JM, Samson L (1991) Relative efficiencies of the bacterial, yeast, and human DNA methyltransferases for the repair of O6-methylguanine and O4-methylthymine. Suggestive evidence for O4-methylthymine repair by eukaryotic methyltransferases. J Biol Chem 266:2767–2771

    CAS  PubMed  Google Scholar 

  • Sedgwick B, Robins P, Totty N, Lindahl T (1988) Functional domains and methyl acceptor sites of the Escherichia coli Ada protein. J Biol Chem 263:4430–4433

    CAS  PubMed  Google Scholar 

  • Shcherbakova OG, Lanzov VA, Ogawa H, Filatov MV (2000) Overexpression of bacterial RecA protein stimulates homologous recombination in somatic mammalian cells. Mutat Res 459:65–71

    CAS  PubMed  Google Scholar 

  • Shinagawa H, Iwasaki H, Kato T, Nakata A (1988) RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci USA 85:1806–1810

    CAS  PubMed  Google Scholar 

  • Shinohara A, Ogawa A, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470

    Article  CAS  PubMed  Google Scholar 

  • Shinohara A, Ogawa H, Matsuda Y, Ushio N, Ikeo K, Ogawa T (1993) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4:239–243

    Article  CAS  PubMed  Google Scholar 

  • Singer B (1975) The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog Nucleic Acid Res Mol Biol 15:219–284

    CAS  PubMed  Google Scholar 

  • Slaninová M, Vlčková V, Brozmanová J, Morais MA, Henriques JA (1996) Biological consequences of E. coli RecA protein expression in the repair defective pso4-1 and rad51::URA3 mutants of S. cerevisiae after treatment with N-methyl-N′-nitro-N-nitrosoguanidine. Neoplasma 43:315–319

    PubMed  Google Scholar 

  • Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast Rad51 protein. Science 265:1241–1243

    CAS  PubMed  Google Scholar 

  • Sung P, Robberson DL (1995) DNA strand exchange mediated by a Rad51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–461

    Article  CAS  PubMed  Google Scholar 

  • Sutton MD, Narumi I, Walker GC (2002) Posttranslational modification of the umuD-encoded subunit of Escherichia coli DNA polymerase V regulates its interactions with the beta processivity clamp. Proc Natl Acad Sci USA 99:5307–5312

    Article  CAS  PubMed  Google Scholar 

  • Swanson RL, Morey NJ, Doetsch PW, Jinks-Robertson S (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol 19:2929–2935

    CAS  PubMed  Google Scholar 

  • Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670

    Google Scholar 

  • Škorvaga M, Černaková L, Chovanec M, Vlasáková D, Kleibl K, Hendry JH, Margison GP, Brozmanová J (2003) Effect of expression of the Escherichia coli nth gene in Saccharomyces cerevisiae on the toxicity of ionizing radiation and hydrogen peroxide. Int J Radiat Biol 79:747–755

    Article  PubMed  Google Scholar 

  • Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J 14:4108–4120

    CAS  PubMed  Google Scholar 

  • Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B (2002) Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419:174–178

    Article  CAS  PubMed  Google Scholar 

  • Valerie K, Fronko G, Henderson EE, Riel JK (1986) Expresion of the denV gene of coliphage T4 in UV sensitive rad mutants of Saccharomyces cerevisiae. Mol Cell Biol 6:3559–3562

    CAS  PubMed  Google Scholar 

  • Valerie K, Green AP, Riel JK, Henderson EE (1987) Transient and stable complementation of ultraviolet repair in XP cells by the denV gene of bacteriophage T4. Cancer Res 47:2967–2971

    CAS  PubMed  Google Scholar 

  • van den Bosch M, Lohman PH, Pastink A (2002) DNA double-strand break repair by homologous recombination. Biol Chem 383:873–892

    PubMed  Google Scholar 

  • Vlčková V, Černáková L, Farkašová E, Brozmanová J (1994) The Escherichia coli recA gene increases UV-induced mitotic gene conversion in Saccharomyces cerevisiae. Curr Genet 25:472–474

    PubMed  Google Scholar 

  • Vlčková V, Slaninová M, Morais MA, Henriques JA, Fridrichová I, Brozmanová J (1997) Searching for a functional analogy between yeast Pso4 and bacterial RecA proteins in induced mitotic recombination. Neoplasma 44:374–379

    PubMed  Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    CAS  PubMed  Google Scholar 

  • Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150:S60-S79

    CAS  PubMed  Google Scholar 

  • Wallace SS, Bandaru V, Kathe SD, Bond JP (2003) The enigma of endonuclease VIII. DNA Repair 2:441–453

    Article  CAS  PubMed  Google Scholar 

  • Ward JF (1981) Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals. Radiat Res 86:185–195

    CAS  PubMed  Google Scholar 

  • Ward JF (1985) Biochemistry of DNA lesions. Radiat Res [Suppl] 8:S103–S111

    CAS  Google Scholar 

  • Xiao W, Derfler B, Chen J, Samson L (1991) Primary sequence and biological functions of a Saccharomyces cerevisiae O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene. EMBO J 10:2179–2186

    CAS  PubMed  Google Scholar 

  • Xiao W, Samson L (1992) The Saccharomyces cerevisiae MGT1 DNA repair methyltransferase gene: its promoter and entire coding sequence, regulation and in vivo biological functions. Nucleic Acids Res 20:3599–3606

    CAS  PubMed  Google Scholar 

  • You HJ, Swanson RL, Doetsch PW (1998) Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III. Biochemistry 37:6033–6040

    Article  CAS  PubMed  Google Scholar 

  • You HJ, Swanson RL, Harrington C, Corbett AH, Jinks-Robertson S, Senturker S, Wallace SS, Boiteux S, Dizdaroglu M, Doetsch PW (1999) Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria. Biochemistry 38:11298–11306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. G.P. Margison and Dr. Z. Dudášová for critical reading of the manuscript. Work in the authors’ laboratory is supported by the VEGA Grant Agency of the Slovak Republic (grants 2/3091/23, 1/0043/03) and by project 2003 SP 51 028 08 00/028 08 01 in the national program Use of Cancer Genomics to Improve the Human Population Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jela Brozmanová.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brozmanová, J., Vlčková, V. & Chovanec, M. How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyces cerevisiae. Curr Genet 46, 317–330 (2004). https://doi.org/10.1007/s00294-004-0536-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0536-2

Keywords

Navigation