Skip to main content
Log in

Suppression of tandem-multimer formation during genetic transformation of the mycotoxin-producing fungus Penicillium paxilli by disrupting an orthologue of Aspergillus nidulans uvsC

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

An orthologue of Aspergillus nidulans uvsC and Saccharomyces cerevisiae RAD51 was cloned from the filamentous fungus, Penicillium paxilli. A mutation in uvsC causes UV sensitivity during germination. The product of RAD51 is involved in meiotic recombination and DNA damage repair. The deduced amino acid sequence of the product of this gene (Pprad51) shared 92% identity with UVSC. Site-specific disruption of pprad51 showed a significant effect for extra-cellular DNA integration. Transformation of the null mutant with pII99, which confers geneticin resistance, resulted in a shift from a predominance of direct repeats at a single site to single copies when compared with a control strain. A copy-number effect of integrated pII99 for geneticin selection was suggested as the frequency of direct repeat formation was less when selected at a lower concentration in the control strain. However, such an effect was not observed in the null mutant, further supporting an involvement of Pprad51 in direct repeat formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bishop JO (1996) Chromosomal insertion of foreign DNA. Reprod NutrDev 36:607–618

    CAS  Google Scholar 

  • Cole RJ, Kirksey JW, Wells JM (1974) A new tremorgenic metabolite from Penicillium paxilli. Can J Microbiol 20:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Durrens P, Green PM, Arst HN Jr, Scazzocchio C (1986) Heterologous insertion of transforming DNA and generation of new deletions associated with transformation in Aspergillus nidulans. Mol Gen Genet 203:544–549

    Article  PubMed  CAS  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170

    PubMed  CAS  Google Scholar 

  • Fletcher LR, Harvey IC (1981) An association of a Lolium endophyte with ryegrass staggers. NZ Vet J 29:185–186

    CAS  Google Scholar 

  • Folger KR, Wong EA, Wahl G, Capecchi MR (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected Plasmid DNA molecules. Mol Cell Biol 2:1372–1387

    PubMed  CAS  Google Scholar 

  • Gallagher RT, White EP, Mortimer PH (1981) Ryegrass staggers: isolation of potent neurotoxins lolitrem A and lolitrem B from staggers-producing pastures. NZ Vet J 29:189–190

    CAS  Google Scholar 

  • Gordenin DA, Lobachev KS, Degtyareva NP, Malkova AL, Perkins E, Resnick MA (1993) Inverted DNA repeats: a source of eukaryotic genomic instability. Mol Cell Biol 13:5315–5322

    PubMed  CAS  Google Scholar 

  • Ichioka D, Itoh T, Itoh Y (2001) An Aspergillus nidulans uvsC null mutant is deficient in homologous DNA integration. Mol Gen Genet 264:709–715

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Scott B (1994) Heterologous and homologous plasmid integration at a spore-pigment locus in Penicillium paxilli generates large deletions. Curr Genet 26:468–476

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Scott B (1997) Effect of de-phosphorylation of linearized pAN7-1 and of addition of restriction enzyme on plasmid integration in Penicillium paxilli. Curr Genet 32:147–151

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Johnson R, Scott B (1994) Integrative transformation of the mycotoxin-producing fungus, Penicillium paxilli. Curr Genet 25:508–513

    Article  PubMed  CAS  Google Scholar 

  • Kistler HC, Benny U (1992) Autonomously replicating plasmids and chromosome rearrangement during transformation of Nectria haematococca. Gene 117:81–89

    Article  PubMed  CAS  Google Scholar 

  • Kodama M, Rose MS, Yang G, Yun SH, Yoder OC, Turgeon BG (1999) The translocation-associated tox1 locus of Cochliobolus heterostrophus is two genetic elements on two different chromosomes. Genetics 151:585–596

    PubMed  CAS  Google Scholar 

  • Kolodner R, Evans DH, Morrison PT (1987) Purification and characterization of an activity from Saccharomyces cerevisiae that catalyzes homologous pairing and strand exchange. Proc Natl Acad Sci USA 84:5560–5564

    Article  PubMed  CAS  Google Scholar 

  • Maier FJ, Schafer W (1999) Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol Chem 380:855–864

    Article  PubMed  CAS  Google Scholar 

  • Mezard C, Nicolas A (1994) Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 14:1278–1292

    PubMed  CAS  Google Scholar 

  • Miller BL, Miller KY, Timberlake WE (1985) Direct and indirect gene replacements in Aspergillus nidulans. Mol Cell Biol 5:1714–1721

    PubMed  CAS  Google Scholar 

  • Mullins ED, Kang S (2001) Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life Sci 58:2043–2052

    Article  PubMed  CAS  Google Scholar 

  • Murray FR, Latch GC, Scott DB (1992) Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet 233:1–9

    Article  PubMed  CAS  Google Scholar 

  • Namsaraev E, Berg P (1997) Characterization of strand exchange activity of yeast Rad51 protein. Mol Cell Biol 17:5359–5368

    PubMed  CAS  Google Scholar 

  • Paietta JV, Marzluf GA (1985) Gene disruption by transformation in Neurospora crassa. Mol Cell Biol 5:1554–1559

    PubMed  CAS  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondel CA van den (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schiestl RH, Zhu J, Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14:4493–4500

    PubMed  CAS  Google Scholar 

  • Scott BR, Kafer E (1982) Aspergillus nidulans — an organism for detecting a range of genetic damage. In: Serres FJ de, Hollaender A (eds) Chemical mutagenesis. Plenum, New York, pp 447–479

    Google Scholar 

  • Seong KY, Chae SK, Kang HS (1997) Cloning of an E. coli RecA and yeast RAD51 homolog, radA, an allele of the uvsC in Aspergillus nidulans and its mutator effects. Mol Cells 7:284–289

    PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa T (1995) Homologous recombination and the roles of double-strand breaks. Trends Biochem Sci 20:387–391

    Article  PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa T (1999) Rad51/RecA protein families and the associated proteins in eukaryotes. Mutat Res 435:13–21

    PubMed  CAS  Google Scholar 

  • Sinden RR, Zheng GX, Brankamp RG, Allen KN (1991) On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics 129:991–1005

    PubMed  CAS  Google Scholar 

  • Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:1241–1243

    Article  PubMed  CAS  Google Scholar 

  • Tishkoff DX, Rockmill B, Roeder GS, Kolodner RD (1995) The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination. Genetics 139:495–509

    PubMed  CAS  Google Scholar 

  • Van Heemst D, et al (1997) Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51. Mol Gen Genet 254:654–664

    Article  PubMed  Google Scholar 

  • Weedon CM, Mantle PG (1987) Paxilline biosynthesis by Acremonium loliae: a step toward defining the origin of lolitrem neurotoxins. Phytochemistry 26:969–971

    Article  CAS  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    Article  PubMed  CAS  Google Scholar 

  • Yoder OC (1988) Cochliobolus heterostrophus, cause of southern corn leaf bright. Adv Plant Pathol 6:93–112

    Google Scholar 

  • Young C, et al (1998) Paxilline-negative mutants of Penicillium paxilli generated by heterologous and homologous plasmid integration. Curr Genet 33:368–377

    Article  PubMed  CAS  Google Scholar 

  • Young C, McMillan L, Telfer E, Scott B (2001) Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39:754–764

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Itoh.

Additional information

Communicated by U. Klick

Published online: 11 October 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibayama, M., Ooi, K., Johnson, R. et al. Suppression of tandem-multimer formation during genetic transformation of the mycotoxin-producing fungus Penicillium paxilli by disrupting an orthologue of Aspergillus nidulans uvsC . Curr Genet 42, 59–65 (2002). https://doi.org/10.1007/s00294-002-0330-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-002-0330-y

Keywords

Navigation