Skip to main content
Log in

Synthesis and characterization of poly(glycolic acid) (PGA) and its graphene oxide hybrids (PGA-GO)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

PGA and PGA-GO hybrids with relatively low graphene oxide (GO) concentrations (0.5–2.5 wt%) were mass synthesized. In the preparation of GO, a modified Hummer’s method was used, and both PGA and PGA-GO followed similar synthesis routes. After forming PGA-GO hybrids, it was demonstrated that the reaction products rendered higher molecular weights as the GO concentration increased. The calorimetric traces showed heterogeneous nucleation and dual crystallization and melting mechanisms, the PGA-GO hybrids having higher melting points than neat PGA. There were no changes in crystal habits in these products, although crystal perfection and crystal thickening depended on the GO concentration. Both effects were associated with the higher melting points of the PGA-GO hybrids. Thermo-gravimetric measurements showed increases in thermal stabilities up to 20% depending on the GO concentration. Isothermal mass crystallization indicated enhancement of crystallization rates and crystal geometry changes from spherical to cylindrical depending on the GO concentration. There were also small clusters and other entities involved in the crystallization process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1.

Similar content being viewed by others

References

  1. Pirsa S, AghbolaghSharifi K (2020) A review of the applications of bioproteins in the preparation of biodegradable films and polymers. J. Chem. Lett. 1:47–58. https://doi.org/10.22034/jchemlett.2020.111200

    Article  Google Scholar 

  2. Hosseini SN, Pirsa S, Farzi J (2021) Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polym Test 97:107182–107184. https://doi.org/10.1016/j.polymertesting.2021.107182

    Article  CAS  Google Scholar 

  3. Pirsa S, Mohammadi B (2021) Conducting/biodegradable chitosan-polyaniline film; Antioxidant, color, solubility and water vapor permeability properties. Main Group Chem 20:133–147

    Article  CAS  Google Scholar 

  4. Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264. https://doi.org/10.1007/s11458-009-0092-x

    Article  Google Scholar 

  5. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30:321–328. https://doi.org/10.1016/j.biotechadv.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  6. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397. https://doi.org/10.3390/polym3031377

    Article  CAS  PubMed  Google Scholar 

  7. Dali S (2006) Synthesis of poly(glycolic acid) in ionic liquids. J Polym Sci Pol Chem 44:3025–3035. https://doi.org/10.1002/pola.21405

    Article  CAS  Google Scholar 

  8. Ayyoob M, Lee DH, Kim JH, Nam SW, Kim YJ (2017) Synthesis of poly (glycolic acids) via solution polycondensation and investigation of their thermal degradation behaviors. Fibers Polym 18:407–415. https://doi.org/10.1007/s12221-017-6889-1

    Article  CAS  Google Scholar 

  9. Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymers 54:5087–5103. https://doi.org/10.1016/j.polymer.2013.06.027

    Article  CAS  Google Scholar 

  10. Schniepp HC, Li JL, McAllister MJ, Sa H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539. https://doi.org/10.1021/jp060936f

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad MW, Dey B, Al Saidi AKA, Choudhury A (2020) Functionalized-graphene reinforced polyethersulfone nanocomposites with improved physical and mechanical properties. Polym Compos 41:4104–4116. https://doi.org/10.1002/pc.25697

    Article  CAS  Google Scholar 

  12. Sandhya PK, Sreekala MS, Boudenne A, Garnier B, Rouxel D, Padmanabhan M, Kalarikkal N, Thomas S (2020) Thermal and electrical properties of phenol formaldehyde foams reinforcing with reduced graphene oxide. Polym compos 41:4329–4339. https://doi.org/10.1002/pc.25715

    Article  CAS  Google Scholar 

  13. Pooresmaeil M, Namazi H (2018) Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf B Colloid Surf 172:17–25. https://doi.org/10.1016/j.colsurfb.2018.08.017

    Article  CAS  Google Scholar 

  14. Kazempour M, Edjlali L, Akbarzadeh A, Davaran S, Farid SS (2019) Synthesis and characterization of dual pH-and hermos-responsive graphene-based nanocarrier for effective anticancer drug delivery. J Drug Deliv Sci Technol 54:101158–101166. https://doi.org/10.1016/j.jddst.2019.101158

    Article  CAS  Google Scholar 

  15. Kazempour M, Namazi H, Akbarzadeh A, Kabiri R (2019) Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artif Cells Nanomed Biotechnol 47:90–94. https://doi.org/10.1080/21691401.2018.1543196

    Article  CAS  PubMed  Google Scholar 

  16. Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR (2016) Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol 135:28–38. https://doi.org/10.1016/j.compscitech.2016.09.007

    Article  CAS  Google Scholar 

  17. Wang E, Dong Y, Islam MZ, Yu L, Liu F, Chen S, Qi X, Zhu Y, Fu Y, Xu Z, Hu N (2019) Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos Sci Technol 169:209–216. https://doi.org/10.1016/j.compscitech.2018.11.022

    Article  CAS  Google Scholar 

  18. Liu C, Wong HM, Yeung KWK, Tjong SC (2016) Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers 8:287. https://doi.org/10.3390/polym8080287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A (2017) Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med 28:73. https://doi.org/10.1007/s10856-017-5874-y

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Cheng Y, Chen L, Zhu T, Ye K, Jia C, Wang H, Zhu M, Fan C, Mo X (2019) In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater 84:98–113. https://doi.org/10.1016/j.actbio.2018.11.032

    Article  CAS  PubMed  Google Scholar 

  21. Gutiérrez-Sánchez M, Medellín-Rodríguez FJ, La-Cruz LISD (2016) Molecular and morphological characterization of poly (L-lactic acid-co-glycolic acid) P(L-LA/GA) copolymers prepared by Azeotropic distillation. J Polym Res 23:1–14. https://doi.org/10.1007/s10965-016-1083-5

    Article  CAS  Google Scholar 

  22. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  23. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/B917103G

    Article  CAS  PubMed  Google Scholar 

  24. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  25. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman, JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  PubMed  Google Scholar 

  26. Kister G, Cassanas G, Vert M (1997) Morphology of poly(glycolic) acid by IR and Raman spectroscopies. Spectrochim Acta A 53:1399–1403. https://doi.org/10.1016/S0584-8539(97)00039-1

    Article  Google Scholar 

  27. Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC Press, USA

  28. Nakafuku C, Yoshimura H (2004) Melting parameters of poly (glycolic acid). Polymers 45:3583–3585. https://doi.org/10.1016/j.polymer.2004.03.041

    Article  CAS  Google Scholar 

  29. Shen K, Yang SL (2013) Preparation of high-molecular-weight poly (glycolic acid) by direct melt polycondensation from glycolic acid. Adv Mater Res 821:1023–1026. https://doi.org/10.4028/www.scientific.net/AMR.821-822.1023

    Article  CAS  Google Scholar 

  30. Nishimura F, Hoshina H, Ozaki Y, Sato H (2019) Isothermal crystallization of poly (glycolic acid) studied by terahertz and infrared spectroscopy and SAXS/WAXD simultaneous measurements. Polym J 51:237–245. https://doi.org/10.1038/s41428-018-0150-7

    Article  CAS  Google Scholar 

  31. Montes de Oca H, Ward IM, Chivers RA, Farrar DF (2009) Structure development during crystallization and solid-state processing of poly (glycolic acid). J Appl Poly 111:1013–1018. https://doi.org/10.1002/app.29000

    Article  CAS  Google Scholar 

  32. Ávila-Orta C, Medellín Rodriguez FJ (2012) Small angle X-ray scattering of polymer systems. In: Handbook of polymer synthesis, characterization, and processing, 1st edn. Wiley, USA

  33. Pramoda KP, Hussain H, Koh HM, Tan HR, He CB (2010) Covalent bonded polymer graphene nanocomposites. J Polym Sci Pol Chem 48:4262–4267. https://doi.org/10.1002/pola.24212

    Article  CAS  Google Scholar 

  34. Hosseini SN, Pirsa S, Farzi J (2021) Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polym Test 97:107182. https://doi.org/10.1016/j.polymertesting.2021.107182

    Article  CAS  Google Scholar 

  35. Shankar S, Reddy JP, Rhim JW, Kim HY (2015) Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr 117:468–475. https://doi.org/10.1016/j.carbpol.2014.10.010

    Article  CAS  Google Scholar 

  36. Patki R, Mezghani K, Phillips PJ (2007) Crystallization kinetics of polymer. In: Physical Properties of Polymers Handbook. Springer, New York

  37. Wang ZG, Hsiao BS, Sauer BB, Kamper WG (1999) The nature of secondary crystallization in poly(ethylene terephthalate). Polymer 40:4615–4627. https://doi.org/10.1016/S0032-3861(99)00067-1

    Article  CAS  Google Scholar 

  38. Medellin-Rodriguez FJ, Phillips PJ, Lin JS, Campos R (1997) The triple melting behavior of poly(ethylene terephthalate): molecular weight effects. J Polym Sci B: Polym Phys 35:1757–1774. https://doi.org/10.1002/(SICI)1099-0488(199708)35:11%3C1757::AID-POLB9%3E3.0.CO;2-P

    Article  Google Scholar 

  39. Woo EM, Chen JM (1995) Effects of solvent treatment on crystallization kinetics of poly(p-phenylene sulfide). J Polym Sci Polym Phys Edn 33:1985–1993. https://doi.org/10.1002/polb.1995.090331401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CONACYT-Mexico supported this research through Grant Number 317097. Sustaita-Rodríguez JM thanks CONACYT Sch. Number 274710. There are no conflicts of interest involving any author. The data and material of this article can be found in supplementary material and by contacting the corresponding author. All authors gave their consent to participate in this research and publish it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Medellin-Rodriguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2184 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sustaita-Rodriguez, J.M., Medellin-Rodriguez, F.J., Quintana-Ruiz, M. et al. Synthesis and characterization of poly(glycolic acid) (PGA) and its graphene oxide hybrids (PGA-GO). Polym. Bull. 80, 7741–7761 (2023). https://doi.org/10.1007/s00289-022-04415-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04415-8

Keywords

Navigation