Skip to main content

Advertisement

Log in

Eugenol: extraction, properties and its applications on incorporation with polymers and resins—a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The inclination of industry towards the naturally extracted raw materials is increasing to ensure the replacement of petroleum-based raw materials. “Eugenol” is a naturally extracted compound that serves as an efficient raw material for various polymers. It is the chemical structure of eugenol that enables it to get functionalized thereby making it potential for incorporation in polymers. The presence of aromatic ring and allyl group ensures the stability and resistivity against the factors which are favourable to the microbial colonization over the surface of the product. This enables the polymers incorporated with eugenol to impart better barrier properties to the product thereby enhancing its shelf life. Thus, it was applied in the polymer, coating as well as in the packaging industry. The study deals with the extraction, properties, and application of eugenol as raw material, in the packaging and the coating industry. Various extraction methods of eugenol have been discussed as conventional, non-conventional, and green technology. It is obtained naturally from plants such as tulsi leaves, clove buds, cinnamon bark, and turmeric. Several properties of eugenol such as solubility, toxicity, antimicrobial, and antifungal properties are discussed. The discussion of the incorporation of Eugenol with various polymers such as polyesters, polyurethanes, polyacrylates, epoxy, polyolefins and subsequent improvements in their properties has been discussed. It was also incorporated with oils and certain biopolymers like starch and cellulose. Eugenol used as an additive and its various properties in each application are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Bibliography

  1. Shibata M, Teramoto N, Shimasaki T, Ogihara M (2011) High-performance bio-based bismaleimide resins using succinic acid and eugenol. Polym J 43:916–922. https://doi.org/10.1038/pj.2011.87

    Article  CAS  Google Scholar 

  2. Yu L, Petinakis S, Dean K, Bilyk A, Wu D (2007) Green Polymeric Blends and Composites from Renewable Resources. Macromol Symp 249–250(1):535–539. https://doi.org/10.1002/MASY.200750432

    Article  Google Scholar 

  3. Ronda JC, Lligadas G, Galià M, Cádiz V (2013) A renewable approach to thermosetting resins. React Funct Polym 73(2):381–395. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2012.03.015

    Article  CAS  Google Scholar 

  4. Thirukumaran P, Shakila A, Muthusamy S (2014) Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv 4(16):7959–7966. https://doi.org/10.1039/C3RA46582A

    Article  CAS  Google Scholar 

  5. Tan YJ, Rohimi NF, Roslan R, Salim N, Mustapha SNH, Zakaria S (2018) Synthesis and characterization of polybenzoxazine thermoset via solventless method. AIP Conf Proc 2030(1):020225. https://doi.org/10.1063/1.5066866

    Article  CAS  Google Scholar 

  6. Flèche G, Huchette M (1986) Isosorbide, Preparation, properties and chemistry. Starch Stärke 38(1):26–30. https://doi.org/10.1002/STAR.19860380107

    Article  Google Scholar 

  7. Marchese A et al (2017) Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol 43(6):668–689. https://doi.org/10.1080/1040841X.2017.1295225

    Article  CAS  PubMed  Google Scholar 

  8. Tønnesen HH, Karlsen J (1985) Studies on curcumin and curcuminoids. Zeitschrift für Leb und Forsch 180(5):402–404. https://doi.org/10.1007/BF01027775

    Article  Google Scholar 

  9. Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5(9):3142–3162. https://doi.org/10.1039/C3PY01194A

    Article  CAS  Google Scholar 

  10. Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23(6):1527–1534. https://doi.org/10.1016/J.FOODHYD.2008.09.016

    Article  CAS  Google Scholar 

  11. Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13(10):1975–2001. https://doi.org/10.1002/BIP.1974.360131005

    Article  CAS  Google Scholar 

  12. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68(6):1013–1051. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2008.03.002

    Article  CAS  Google Scholar 

  13. Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications—a review. J Food Sci Technol 51(3):409. https://doi.org/10.1007/S13197-011-0522-X

    Article  CAS  PubMed  Google Scholar 

  14. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227. https://doi.org/10.1016/J.MATTOD.2013.06.004

    Article  CAS  Google Scholar 

  15. Roy K, Thory R, Sinhmar A, Pathera AK, Nain V (2020) Development and characterization of nano starch-based composite films from mung bean (Vigna radiata). Int J Biol Macromol 144:242–251. https://doi.org/10.1016/J.IJBIOMAC.2019.12.113

    Article  CAS  PubMed  Google Scholar 

  16. Danesh M et al (2021) The yielding of attractive gels of nanocrystal cellulose (CNC). J Rheol (N Y N Y) 65(5):855. https://doi.org/10.1122/8.0000247

    Article  CAS  Google Scholar 

  17. Moud AA, Kamkar M, Sanati-Nezhad A, Hejazi SH, Sundararaj U (2021) Viscoelastic properties of poly(vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation. Colloids Surfaces A Physicochem Eng Asp 609:125577. https://doi.org/10.1016/J.COLSURFA.2020.125577

    Article  CAS  Google Scholar 

  18. Jung BO, Chung SJ, Lee SB (2006) Preparation and characterization of eugenol-grafted chitosan hydrogels and their antioxidant activities. J Appl Polym Sci 99(6):3500–3506. https://doi.org/10.1002/APP.22974

    Article  CAS  Google Scholar 

  19. Aziz T et al (2021) Enhancement in adhesive and thermal properties of bio-based epoxy resin by using eugenol grafted cellulose nanocrystals. J Inorg Organomet Polym Mater 31(8):3290–3300. https://doi.org/10.1007/S10904-021-01942-1

    Article  CAS  Google Scholar 

  20. Li W et al (2018) Self-healing cellulose nanocrystals-containing gels via reshuffling of thiuram disulfide bonds. Polymer 10(12):1392. https://doi.org/10.3390/POLYM10121392

    Article  Google Scholar 

  21. Cheng C, Li J, Yang F, Li Y, Hu Z, Wang J (2018) Renewable eugenol-based functional polymers with self-healing and high temperature resistance properties. J Polym Res 25(2):1–13. https://doi.org/10.1007/S10965-018-1460-3

    Article  CAS  Google Scholar 

  22. Cheng C et al (2016) Self-healing polymers based on eugenol via combination of thiol-ene and thiol oxidation reactions. J Polym Res 23(6):1–12. https://doi.org/10.1007/S10965-016-1001-X

    Article  Google Scholar 

  23. Li W, Xiao L, Wang Y, Chen J, Nie X (2021) Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange: synthesis and structure-property relationships. Polymer (Guildf) 229:123967. https://doi.org/10.1016/J.POLYMER.2021.123967

    Article  CAS  Google Scholar 

  24. Yuwono M et al (2002) Eugenol. Anal Profiles Drug Subst Excip 29(C):149–177. https://doi.org/10.1016/S1075-6280(02)29006-0

    Article  CAS  Google Scholar 

  25. Pramod K, Ansari SH, Ali J (2010) Eugenol: a natural compound with versatile pharmacological actions. Nat Prod Commun 5(12):1999–2006. https://doi.org/10.1177/1934578X1000501236

    Article  CAS  PubMed  Google Scholar 

  26. Molina-Gutiérrez S, Ladmiral V, Bongiovanni R, Caillol S, Lacroix-Desmazes P (2019) Emulsion polymerization of dihydroeugenol-, eugenol-, and isoeugenol-derived methacrylates. Ind Eng Chem Res 58(46):21155–21164. https://doi.org/10.1021/acs.iecr.9b02338

    Article  CAS  Google Scholar 

  27. Hu Q, Zhou M, Wei S (2018) Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. J Food Sci. https://doi.org/10.1111/1750-3841.14180

    Article  PubMed  Google Scholar 

  28. Ulanowska M, Olas B (2021) Biological properties and prospects for the application of eugenol—a review. Int J Mol Sci. https://doi.org/10.3390/IJMS22073671

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dole V, Kharat P, Khan A (2013) Zinc oxide eugenol cement. J Cont Med A Dent Sept-Dec 1:4. https://doi.org/10.18049/jcmad/111

    Article  Google Scholar 

  30. Bolasina SN, de Azevedo A, Petry AC (2017) Comparative efficacy of benzocaine, tricaine methanesulfonate and eugenol as anesthetic agents in the guppy Poecilia vivipara. Aquac Rep 6:56–60. https://doi.org/10.1016/J.AQREP.2017.04.002

    Article  Google Scholar 

  31. Zahran E, Risha E, Rizk A (2021) Comparison propofol and eugenol anesthetics efficacy and effects on general health in Nile Tilapia. Aquaculture 534:736251. https://doi.org/10.1016/J.AQUACULTURE.2020.736251

    Article  CAS  Google Scholar 

  32. He R et al (2020) Effectiveness of eugenol as an anesthetic for adult spotted sea bass (Lateolabrax maculatus). Aquaculture 523:735180. https://doi.org/10.1016/J.AQUACULTURE.2020.735180

    Article  CAS  Google Scholar 

  33. Kaufman TS (2015) The multiple faces of eugenol. a versatile starting material and building block for organic and bio-organic synthesis and a convenient precursor toward bio-based fine chemicals. J Braz Chem Soc 26(6):1055–1085. https://doi.org/10.5935/0103-5053.20150086

    Article  CAS  Google Scholar 

  34. Al-Sharif I, Remmal A, Aboussekhra A (2013) Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer 13(1):1–10. https://doi.org/10.1186/1471-2407-13-600/FIGURES/6

    Article  Google Scholar 

  35. Fangjun L, Zhijia Y (2018) Tumor suppressive roles of eugenol in human lung cancer cells. Thorac Cancer 9(1):25–29. https://doi.org/10.1111/1759-7714.12508

    Article  CAS  PubMed  Google Scholar 

  36. Khalil AA, Rahman UU, Khan MR, Sahar A, Mehmood T, Khan M (2017) Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv 7(52):32669–32681. https://doi.org/10.1039/C7RA04803C

    Article  CAS  Google Scholar 

  37. Salerno A, Diéguez S, Diaz-Gomez L, Bisergaeva RA, Takaeva MA, Sirieva YN (2021) Extraction of eugenol, a natural product, and the preparation of eugenol benzoate. J Phys Conf Ser 1889(2):022085. https://doi.org/10.1088/1742-6596/1889/2/022085

    Article  CAS  Google Scholar 

  38. Arun A, Gujar KJG, Student PG, Chavan SM (2016) Experimental and modeling studies on extraction of eugenol from Cinnamomum zeylanicum (Dalchini). IJSTE-Int J Sci Technol Eng, 2(11) 2016, Accessed: Dec 15, 2021 (online). Available: www.ijste.org

  39. Lugemwa FN (2012) Extraction of betulin, trimyristin, eugenol and carnosic acid using water–organic solvent mixtures. Molecules 17(8):9274–9282. https://doi.org/10.3390/MOLECULES17089274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Myint S, Daud WRW, Mohamad AB, Kadhum AAH (1995) Separation and identification of eugenol in ethanol extract of cloves by reversed-phase high-performance liquid chromatography. J Am Oil Chem Soc 72(10):1231–1233. https://doi.org/10.1007/BF02540996

    Article  CAS  Google Scholar 

  41. Myint S, Ramli W, Daud W, Mohamad AB (1995) Determination of optimal conditions for extraction of alcohol-soluble eugenol containing material from cloves. PertanikaJ Sci Technol 3(1):99–106

    Google Scholar 

  42. Garkal DJ, Taralkar SV, Kulkarni P, Jagtap S, Nagawade A (2012) Kinetic model for extraction of eugenol from leaves of Ocimum sanctum Linn (TULSI). Undefined (2012)

  43. Poralijan V, Shokuhi Rad A (2016) Extraction of eugenol from carnation: a quantitative and qualitative analysis by aqueous and ethanolic solvents. J Essent Oil Bear Plants 19(6):1495–1502. https://doi.org/10.1080/0972060X.2016.1211962

    Article  CAS  Google Scholar 

  44. Overly KR (2019) Microwave-assisted isolation of eugenol from cloves. J Chem Educ 96(11):2665–2667. https://doi.org/10.1021/ACS.JCHEMED.8B01022

    Article  CAS  Google Scholar 

  45. Golmakani MT, Zare M, Razzaghi S (2017) Eugenol Enrichment of Clove Bud Essential Oil Using Different Microwave-assisted Distillation Methods. Food Sci Technol Res 23(3):385–394. https://doi.org/10.3136/FSTR.23.385

    Article  CAS  Google Scholar 

  46. Geng Y, Liu J, Lv R, Yuan J, Lin Y, Wang X (2007) An efficient method for extraction, separation and purification of eugenol from Eugenia caryophyllata by supercritical fluid extraction and high-speed counter-current chromatography. Sep Purif Technol 57(2):237–241. https://doi.org/10.1016/J.SEPPUR.2007.04.015

    Article  CAS  Google Scholar 

  47. Yazdani F et al (2005) Supercritical CO2 extraction of essential oil from clove bud: Effect of operation conditions on the selective isolation of eugenol and eugenyl acetate. Zeitschrift fur Naturforsch 60(11):1197–1201. https://doi.org/10.1515/ZNB-2005-1113/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  48. Ntamila MS, Hassanali A (1976) Isolation of oil of clove and separation of eugenol and acetyl eugenol: an instructive experiment for beginning chemistry undergraduates. J Chem Educ 53(4):263. https://doi.org/10.1021/ED053P263

    Article  CAS  Google Scholar 

  49. Ghosh S, Chatterjee D, Das S, Bhattacharjee P (2013) Supercritical carbon dioxide extraction of eugenol-rich fraction from Ocimum sanctum Linn and a comparative evaluation with other extraction techniques: process optimization and phytochemical characterization. Ind Crops Prod 47:78–85. https://doi.org/10.1016/J.INDCROP.2013.02.030

    Article  CAS  Google Scholar 

  50. Ghosh SK, Roy D, Chatterjee D, Bhattacharjee P, Das S (2014) SFE as a superior technique for extraction of eugenol-rich fraction from Cinnamomum tamala Nees (Bay Leaf)—process analysis and phytochemical characterization. Undefined

  51. Chatterjee D, Ghosh PK, Ghosh S, Bhattacharjee P (2017) Supercritical carbon dioxide extraction of eugenol from tulsi leaves: process optimization and packed bed characterization. Chem Eng Res Des 118:94–102. https://doi.org/10.1016/J.CHERD.2016.11.025

    Article  CAS  Google Scholar 

  52. Frohlich PC, Santos KA, Palú F, Cardozo-Filho L, da Silva C, da Silva EA (2019) Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum) leaves using supercritical CO2. J Supercrit Fluids 143:313–320. https://doi.org/10.1016/J.SUPFLU.2018.09.009

    Article  CAS  Google Scholar 

  53. Clifford AA, Basile A, Al-Saidi SHR (1999) A comparison of the extraction of clove buds with supercritical carbon dioxide and superheated water. Fresen J Anal Chem 364(7):635–637. https://doi.org/10.1007/S002160051400

    Article  CAS  Google Scholar 

  54. Just J, Bunton GL, Deans BJ, Murray NL, Bissember AC, Smith JA (2015) Extraction of eugenol from cloves using an unmodified household espresso machine: an alternative to traditional steam-distillation. J Chem Educ 93(1):213–216. https://doi.org/10.1021/ACS.JCHEMED.5B00476

    Article  Google Scholar 

  55. Rovio S, Hartonen K, Holm Y, Hiltunen R, Riekkola M-L (1999) Extraction of clove using pressurized hot water. Flavour Fragr J 14(6):399–404. https://doi.org/10.1002/(sici)1099-1026(199911/12)14:6<399::aid-ffj851>3.0.co;2-a

    Article  Google Scholar 

  56. LaVoie EJ, Adams JD, Reinhardt J, Rivenson A, Hoffmann D (1986) Toxicity studies on clove cigarette smoke and constituents of clove: determination of the LD50 of eugenol by intratracheal instillation in rats and hamsters. Arch Toxicol 59(2):78–81. https://doi.org/10.1007/BF00286727

    Article  CAS  PubMed  Google Scholar 

  57. Hartnoll G, Moore D, Douek D (1993) Near fatal ingestion of oil of cloves. Arch Dis Child 69(3):392–393. https://doi.org/10.1136/ADC.69.3.392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Soundran V, Namagiri T, Manonayaki S, Vanithakumari G (1994) Hepatotoxicity of eugenol. Anc Sci Life 13(3–4): 213, Accessed: Dec 15, 2021 (online). Available: /pmc/articles/PMC3336525/?report=abstract

  59. Mizutani T, Satoh K, Nomura H, Nakanishi K (1991) Hepatotoxicity of eugenol in mice depleted of glutathione by treatment with dl-buthionine sulfoximine. Res Commun Chem Pathol Pharmacol 71(2):219–230, Feb 1991, Accessed: Dec 15, 2021 (online). Available: https://europepmc.org/article/med/2047567

  60. Janes SEJ, Price CSG, Thomas D (2005) Essential oil poisoning: N-acetylcysteine for eugenol-induced hepatic failure and analysis of a national database. Eur J Pediatr 164(8):520–522. https://doi.org/10.1007/S00431-005-1692-1

    Article  PubMed  Google Scholar 

  61. Ho YC, Huang FM, Chang YC (2006) Mechanisms of cytotoxicity of eugenol in human osteoblastic cells in vitro. Int Endod J 39(5):389–393. https://doi.org/10.1111/J.1365-2591.2006.01091.X

    Article  PubMed  Google Scholar 

  62. Babich H, Stern A, Borenfreund E (1993) Eugenol cytotoxicity evaluated with continuous cell lines. Toxicol Vitr 7(2):105–109. https://doi.org/10.1016/0887-2333(93)90119-P

    Article  CAS  Google Scholar 

  63. Gerosa R, Borin M, Menegazzi G, Puttini M, Cavalleri G (1996) In vitro evaluation of the cytotoxicity of pure eugenol. J Endod 22(10):532–534. https://doi.org/10.1016/S0099-2399(96)80012-4

    Article  CAS  PubMed  Google Scholar 

  64. Thompson DC, Constantin-Teodosiu D, Moldéus P (1991) Metabolism and cytotoxicity of eugenol in isolated rat hepatocytes. Chem Biol Interact 77(2):137–147. https://doi.org/10.1016/0009-2797(91)90069-J

    Article  CAS  PubMed  Google Scholar 

  65. Leite AM, de Lima EO, de Souza EL, de Diniz MFFM, Trajano VN, de Medeiros IA (2007) Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev Bras Ciências Farm 43(1):121–126. https://doi.org/10.1590/S1516-93322007000100015

    Article  CAS  Google Scholar 

  66. Mahaboob Ali S et al (2005) Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob 4:20. https://doi.org/10.1186/1476-0711-4-20

    Article  CAS  Google Scholar 

  67. Shokeen P, Bala M, Singh M, Tandon V (2008) In vitro activity of eugenol, an active component from Ocimum sanctum, against multiresistant and susceptible strains of Neisseria gonorrhoeae. Int J Antimicrob Agents 32(2):174–179. https://doi.org/10.1016/J.IJANTIMICAG.2008.03.018

    Article  CAS  PubMed  Google Scholar 

  68. Ribes S, Ruiz-Rico M, Pérez-Esteve É, Fuentes A, Barat JM (2019) Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT 113:108326. https://doi.org/10.1016/J.LWT.2019.108326

    Article  CAS  Google Scholar 

  69. Zhang H, Dudley EG, Davidson PM, Harte F (2017) Critical concentration of lecithin enhances the antimicrobial activity of eugenol against Escherichia coli. Appl Environ Microbiol. https://doi.org/10.1128/AEM.03467-16/FORMAT/EPUB

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang H, Dudley EG, Harte F (2017) Critical synergistic concentration of lecithin phospholipids improves the antimicrobial activity of eugenol against Escherichia coli. Appl Environ Microbiol 83(21):1–6. https://doi.org/10.1128/AEM.01583-17

    Article  Google Scholar 

  71. Campaniello D, Corbo MR, Sinigaglia M. Antifungal activity of eugenol against penicillium, aspergillus, and fusarium species (online). Available: http://meridian.allenpress.com/jfp/article-pdf/73/6/1124/1679478/0362-028x-73_6_1124.pdf.

  72. de Oliveira Pereira F, Mendes JM, de Oliveira Lima E (2013) Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med Mycol 51(5):507–513. https://doi.org/10.3109/13693786.2012.742966

    Article  CAS  PubMed  Google Scholar 

  73. Ahmad A, Khan A, Yousuf S, Khan LA, Manzoor N (2010) Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 81(8):1157–1162. https://doi.org/10.1016/J.FITOTE.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  74. Wang C, Zhang J, Chen H, Fan Y, Shi Z (2010) Antifungal activity of eugenol against Botrytis cinerea. Trop Plant Pathol 35(3):137–143. https://doi.org/10.1590/S1982-56762010000300001

    Article  CAS  Google Scholar 

  75. Firdaus M, Kusumaningsih T, Wibowo AH, Hertiningtyas C (2020) Green synthesis of renewable dimethyl terephthalate-like monomer from eugenol. Sains Malays 49(11):2715–2720. https://doi.org/10.17576/jsm-2020-4911-10

    Article  CAS  Google Scholar 

  76. Gazzotti S et al (2019) Eugenol-grafted aliphatic polyesters: Towards inherently antimicrobial PLA-based materials exploiting OCAs chemistry. Eur Polym J 114:369–379. https://doi.org/10.1016/J.EURPOLYMJ.2019.03.001

    Article  CAS  Google Scholar 

  77. Gazzotti S et al (2018) One-pot synthesis of sustainable high-performance thermoset by exploiting eugenol functionalized 1,3-dioxolan-4-one. ACS Sustain Chem Eng 6(11):15201–15211. https://doi.org/10.1021/acssuschemeng.8b03655

    Article  CAS  Google Scholar 

  78. Hu K, Zhao D, Wu G, Ma J (2015) Polyesters derived from bio-based eugenol and 10-undecenoic acid: synthesis, characterization, and structure-property relationships. RSC Adv 5(105):85996–86005. https://doi.org/10.1039/c5ra17457k

    Article  CAS  Google Scholar 

  79. Hu K, Zhao D, Wu G, Ma J (2015) Synthesis and properties of polyesters derived from renewable eugenol and α,ω-diols via a continuous overheating method. Polym Chem 6(40):7138–7148. https://doi.org/10.1039/c5py01075f

    Article  CAS  Google Scholar 

  80. Hu K, Zhao D, Wu G, Ma J (2016) Toughened aromatic poly-(decylene terephthalate) copolyesters with two renewable eugenol-based components via a random copolymerization method. Polym Chem 7(5):1096–1110. https://doi.org/10.1039/c5py01699a

    Article  CAS  Google Scholar 

  81. Hu K (2020) Bio-based aromatic copolyesters: influence of chemical microstructures on thermal and crystalline properties. Polymers 12(4):829. https://doi.org/10.3390/polym12040829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu K (2021) Synergistic interaction of renewable nipagin and eugenol for high performance aromatic copoly(ether ester) materials. Mapp Intim. https://doi.org/10.21203/rs.3.rs-706272/v1

    Article  Google Scholar 

  83. Cheng C, Li J, Yang F, Li Y, Hu Z, Wang J (2018) Renewable eugenol-based functional polymers with self-healing and high temperature resistance properties. J Polym Res 25(2):57. https://doi.org/10.1007/s10965-018-1460-3

    Article  CAS  Google Scholar 

  84. Mahajan MS, Mahulikar PP, Gite VV (2020) Eugenol based renewable polyols for development of 2K anticorrosive polyurethane coatings. Prog Org Coat 148:105826. https://doi.org/10.1016/J.PORGCOAT.2020.105826

    Article  CAS  Google Scholar 

  85. Liang J-Y, Shin S-R, Lee S-H, Lee D-S (2019) Characteristics of self-healable copolymers of styrene and eugenol terminated polyurethane prepolymer. Polymers 11(10):1674. https://doi.org/10.3390/polym11101674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen CH, Tung SH, Jeng RJ, Abu-Omar MM, Lin CH (2019) A facile strategy to achieve fully bio-based epoxy thermosets from eugenol. Green Chem 21(16):4475–4488. https://doi.org/10.1039/c9gc01184f

    Article  CAS  Google Scholar 

  87. Caillol S, Boutevin B, Auvergne R (2021) Eugenol, a developing asset in biobased epoxy resins. Polymer (Guildf) 223:123663. https://doi.org/10.1016/J.POLYMER.2021.123663

    Article  CAS  Google Scholar 

  88. Chen B, Wang F, Li JY, Zhang JL, Zhang Y, Zhao HC (2019) Synthesis of eugenol bio-based reactive epoxy diluent and study on the curing kinetics and properties of the epoxy resin system. Chin J Polym Sci 37(5):500–508. https://doi.org/10.1007/s10118-019-2210-7

    Article  CAS  Google Scholar 

  89. Zheng J et al (2021) Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane. J Appl Polym Sci 138(14):1–11. https://doi.org/10.1002/app.50138

    Article  CAS  Google Scholar 

  90. Chen G, Chen JF, Feng J, Qiu W, Zhao Y (2017) Eugenol-modified polysiloxanes as effective anticorrosion additives for epoxy resin coatings. RSC Adv. https://doi.org/10.1039/c7ra12218geng

    Article  PubMed  Google Scholar 

  91. Nal P, Mestry S, Mapari S, Mhaske S (2019) Eugenol/vanillin-derived novel triarylmethane-based crosslinking agent for epoxy coating. Iran Polym J 28(8):685–695. https://doi.org/10.1007/s13726-019-00736-0

    Article  CAS  Google Scholar 

  92. Guzmán D, Ramis X, Fernández-Francos X, De la Flor S, Serra A (2018) Preparation of new biobased coatings from a triglycidyl eugenol derivative through thiol-epoxy click reaction. Prog Org Coat 114:259–267. https://doi.org/10.1016/J.PORGCOAT.2017.10.025

    Article  Google Scholar 

  93. Liu Y et al (2017) Bio-based epoxy resins derived from eugenol with low dielectric constant. J Electron Packag Trans ASME 139(3):1–15. https://doi.org/10.1115/1.4036818

    Article  CAS  Google Scholar 

  94. Al-Odayni A-B et al (2020) New monomer based on eugenol methacrylate, synthesis, polymeriz.ation and copolymerization with methyl methacrylate-characterization and thermal properties. Polymers 12(1):160. https://doi.org/10.3390/polym12010160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Molina-Gutiérrez S et al (2020) Radical aqueous emulsion copolymerization of eugenol-derived monomers for adhesive applications. Biomacromol 21(11):4514–4521. https://doi.org/10.1021/acs.biomac.0c00461

    Article  CAS  Google Scholar 

  96. Handayani DS, Rachma AH, Marliyana SD (2019) Synthesis of copoly-(eugenol-stearyl acrylate) via cationic polymerization. J Phys Conf Ser 1153:012124. https://doi.org/10.1088/1742-6596/1153/1/012124

    Article  CAS  Google Scholar 

  97. Liu K, Madbouly SA, Kessler MR (2015) Biorenewable thermosetting copolymer based on soybean oil and eugenol. Eur Polym J 69:16–28. https://doi.org/10.1016/J.EURPOLYMJ.2015.05.021

    Article  CAS  Google Scholar 

  98. Handoko H (2014) Bio-based thermosetting copolymers of eugenol and tung oil. Mater Sci. https://doi.org/10.31274/ETD-180810-1031

    Article  Google Scholar 

  99. Xu H, Zhang D, Li J (2019) Antibacterial nanoparticles with universal adhesion function based on dopamine and eugenol. J Bioresour Bioprod 4(3):177–182. https://doi.org/10.12162/JBB.V4I3.006

    Article  CAS  Google Scholar 

  100. Navikaite-Snipaitiene V et al (2018) Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef. Meat Sci 145:9–15. https://doi.org/10.1016/J.MEATSCI.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  101. Shibata M, Tetramoto N, Imada A, Neda M, Sugimoto S (2013) Bio-based thermosetting bismaleimide resins using eugenol, bieugenol and eugenol novolac. React Funct Polym 73(8):1086–1095. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2013.05.002

    Article  CAS  Google Scholar 

  102. Ning Y, Li D-S, Wang M-C, Chen Y-C, Jiang L (2020) Bio-based hydroxymethylated eugenol modified bismaleimide resin and its high-temperature composites. Mater Sci. https://doi.org/10.1002/app.49631

    Article  Google Scholar 

  103. Ning Y, Sen Li D, Cun Wang M, Jiang L (2019) Eugenol-derived bismaleimide high performance resins and composites using diisocyanate as property modifier. Macromol Mater Eng 304(4):1800713. https://doi.org/10.1002/MAME.201800713

    Article  Google Scholar 

  104. Zhang X, Akram R, Zhang S, Ma H, Wu Z, Wu D (2017) Hexa(eugenol)cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy. React Funct Polym 113:77–84. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2017.02.010

    Article  CAS  Google Scholar 

  105. Yao H, Lu X, Xin Z, Li X, Chen C, Cao Y (2021) Two novel eugenol-based difunctional benzoxazines: synthesis and properties. Colloids Surfaces A Physicochem Eng Asp. https://doi.org/10.1016/J.COLSURFA.2021.126209

    Article  Google Scholar 

  106. Thirukumaran P, Parveen AS, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2(12):2790–2801. https://doi.org/10.1021/SC500548C

    Article  CAS  Google Scholar 

  107. Amarnath N, Shukla S, Lochab B (2018) Harvesting the benefits of inherent reactive functionalities in fully biosourced isomeric benzoxazines. ACS Sustain Chem Eng 6(11):15151–15161. https://doi.org/10.1021/ACSSUSCHEMENG.8B03631

    Article  CAS  Google Scholar 

  108. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P (2015) Bio-based high performance thermosets: stabilization and reinforcement of eugenol-based benzoxazine networks with BMI and CNT. Eur Polym J 67:494–502. https://doi.org/10.1016/J.EURPOLYMJ.2014.11.030

    Article  CAS  Google Scholar 

  109. Periyasamy T, Asrafali SP, Kim SC (2017) Functionalized MWCNTs, an efficient reinforcement for the preparation of eugenol based high performance PBz/BMI/CNT nanocomposites exhibiting outstanding thermo-mechanical properties. New J Chem 41(14):6607–6615. https://doi.org/10.1039/C7NJ00357A

    Article  CAS  Google Scholar 

  110. Krishnan S, Arumugam H, Chavali M, Muthukaruppan A (2019) “High dielectric, low curing with high thermally stable renewable eugenol-based polybenzoxazine matrices and nanocomposites. J Appl Polym Sci. https://doi.org/10.1002/APP.47050

    Article  Google Scholar 

  111. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P (2015) Eugenol-based benzoxazine: from straight synthesis to taming of the network properties. J Mater Chem A 3(11):6012–6018. https://doi.org/10.1039/C4TA06636G

    Article  CAS  Google Scholar 

  112. Sharma P, Dutta P, Nebhani L (2019) Sustainable approach towards enhancing thermal stability of bio-based polybenzoxazines. Polymer (Guildf) 184:121905. https://doi.org/10.1016/J.POLYMER.2019.121905

    Article  Google Scholar 

  113. Sharma P, Nebhani L (2020) Hybrid polymers based on bio-based benzoxazines with inorganic siloxane linkage to confer impressive thermal performance. Polym Guildf. https://doi.org/10.1016/J.POLYMER.2020.122549

    Article  Google Scholar 

  114. Devaraju S, Krishnadevi K, Naveena E, Alagar M (2021) Eco-friendly fully bio-based polybenzoxazine-silica hybrid materials by sol–gel approach. Polym Bull 78(8):4251–4260. https://doi.org/10.1007/S00289-020-03309-X

    Article  CAS  Google Scholar 

  115. Dai J et al (2018) Synthesis of eugenol-based silicon-containing benzoxazines and their applications as bio-based organic coatings. Coatings 8(3):88. https://doi.org/10.3390/COATINGS8030088

    Article  Google Scholar 

  116. Hariharan A, Prabunathan P, Subramanian SS, Kumaravel M, Alagar M (2019) Blends of chalcone benzoxazine and bio-benzoxazines coated cotton fabrics for oil–water separation and bio-silica reinforced nanocomposites for low-k Applications. J Polym Environ 28(2):598–613. https://doi.org/10.1007/S10924-019-01629-2

    Article  Google Scholar 

  117. Periyasamy T, Asrafali SP, Muthusamy S (2015) New benzoxazines containing polyhedral oligomeric silsesquioxane from eugenol, guaiacol and vanillin. New J Chem 39(3):1691–1702. https://doi.org/10.1039/C4NJ02047B

    Article  CAS  Google Scholar 

  118. Thirukumaran P, Parveen AS, Sarojadevi M (2015) Synthesis of eugenol-based polybenzoxazine–POSS nanocomposites for low dielectric applications. Polym Compos 36(11):1973–1982. https://doi.org/10.1002/PC.23107

    Article  CAS  Google Scholar 

  119. Shi W, Zhang X, Ji Y, Zhao Z, Li W, Jia X (2019) Sustainable preparation of bio-based polybenzoxazine resins from amino acid and their application in CO2 adsorption. ACS Sustain Chem Eng 7(20):17313–17324. https://doi.org/10.1021/ACSSUSCHEMENG.9B04163

    Article  CAS  Google Scholar 

  120. Vaithilingam S, ThangavelRavivarman R, Muthukaruppan A (2020) Development of cashew nut shell carbon reinforced thiourea based biophenolic benzoxazine-epoxy composites: high performance biobased coating materials. Polym Compos 41(5):1950–1961. https://doi.org/10.1002/PC.25510

    Article  CAS  Google Scholar 

  121. Zhang SM, Zhao JQ, Liu Y, Liu YX, Liu CM (2021) Renewable furan-derived diamine as primary amine source to prepare fully bio-based bis-benzoxazine monomer under solvent-free condition. React Funct Polym. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.104957

    Article  Google Scholar 

  122. Zhu Y, Su J, Lin R, Li P (2019) Improving the thermal stability of polybenzoxazines through incorporation of eugenol-based benzoxazine. Macromol Res 28(5):472–479. https://doi.org/10.1007/S13233-020-8055-7

    Article  Google Scholar 

  123. Rafiqul Bari GAKM, Kim H (2019) Composite organic encapsulate film with epoxy and benzoxazine. Eur Polym J 116:453–462. https://doi.org/10.1016/J.EURPOLYMJ.2019.04.039

    Article  CAS  Google Scholar 

  124. Chen C, Cao Y, Lu X, Li X, Yao H, Xin Z (2021) Copolymer of eugenol-based and pyrogallol-based benzoxazines: Low curing temperature and enhanced corrosion resistance, download.” https://ur.booksc.eu/book/83773514/4a5440 (accessed Dec 15 2021)

  125. Naddeo M, Vigliotta G, Pellecchia C, Pappalardo D (2020) Synthesis of bio-based polymacrolactones with pendant eugenol moieties as novel antimicrobial thermoplastic materials. React Funct Polym. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2020.104714

    Article  Google Scholar 

  126. Serrano M, Martínez-Romero D, Castillo S, Guillén F, Valero D (2005) The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innov Food Sci Emerg Technol 6(1):115–123. https://doi.org/10.1016/J.IFSET.2004.09.001

    Article  CAS  Google Scholar 

  127. Norouzi Faz F, Mirdehghan SH, Karimi H, Alaei H (2016) Eeffect of thymol and menthol essential oils combined with packaging with celofan on the maintenance of postharvest quality of strawberry cv. Parus. Iran J Hortic Sci 47(1):81–91. https://doi.org/10.22059/IJHS.2016.58214

    Article  Google Scholar 

  128. Fernández-López J, Zhi N, Aleson-Carbonell L, Pérez-Alvarez JA, Kuri V (2005) Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci 69(3):371–380. https://doi.org/10.1016/J.MEATSCI.2004.08.004

    Article  PubMed  Google Scholar 

  129. Yetim H, Sarıoǧlu K, Ekici L, Ozturk I, Sağdıç O (2011) Some characteristics of meats from the chickens fed with Lamiaceae spices: proximate composition, lipid oxidation, color and sensory properties. undefined

  130. Scheuer C et al (2021) Influence of novel active nanocomposite polyethylene films incorporated with nanoclays and plant extracts in controlling lipid oxidation and growth of Escherichia coli O157:H7 in ground beef. In: Physical education and sport for children and youth with special needs researches—best practices—situation, pp 343–354 (2021)

  131. Goñi ML, Gañán NA, Strumia MC, Martini RE (2016) Eugenol-loaded LLDPE films with antioxidant activity by supercritical carbon dioxide impregnation. J Supercrit Fluids 111:28–35. https://doi.org/10.1016/J.SUPFLU.2016.01.012

    Article  Google Scholar 

  132. Higuera Barraza OA, Soto-valdez H, Acedo-félix E, Peralta E (2015) Fabrication of an antimicrobial active packaging and its effect on the growth of Pseudomonas and aerobic mesophilic bacteria in chicken. Vitae 22(2):111–120. https://doi.org/10.17533/udea.vitae.v22n2a05

    Article  Google Scholar 

  133. Belen G, Borrajo P, Pérez-Santaescolástica C, Carvalho FA, Franco Ruiz D, Lorenzo (2018) Application of an antioxidant active packaging system to extend the shelf-life of fresh veal meat, ICOMST18, Melbourne

  134. Camani PH, da Silva Torin RF, de Souza CWO, Zanata L, dos Santos Rosa D (2021) Antimicrobial films containing hybrid systems aiming at packaging applications. Polym Int 70(5):628–635. https://doi.org/10.1002/PI.6147

    Article  CAS  Google Scholar 

  135. Appavoo D, Amarnath N, Lochab B (2020) Cardanol and eugenol sourced sustainable non-halogen flame retardants for enhanced stability of renewable polybenzoxazines. Front Chem. https://doi.org/10.3389/FCHEM.2020.00711

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pourchet S et al (2019) New reactive isoeugenol based phosphate flame retardant: toward green epoxy resins. ACS Sustain Chem Eng 7(16):14074–14088. https://doi.org/10.1021/ACSSUSCHEMENG.9B02629

    Article  CAS  Google Scholar 

  137. Corbo MR, Di Giulio S, Conte A, Speranza B, Sinigaglia M, Del Nobile MA (2009) Thymol and modified atmosphere packaging to control microbiological spoilage in packed fresh cod hamburgers. Int J Food Sci Technol 44(8):1553–1560. https://doi.org/10.1111/J.1365-2621.2008.01822.X

    Article  CAS  Google Scholar 

  138. Mancusi C (2008) SLIM 2008-Shelf-life International Meeting-Special issue of "Italian Journal of Food Science". Ital J Food Sci. https://doi.org/10.14674/IJFS-1609

    Article  Google Scholar 

  139. Le D, Samart C, Kongparakul S, Nomura K (2019) Synthesis of new polyesters by acyclic diene metathesis polymerization of bio-based α,ω-dienes prepared from eugenol and castor oil (undecenoate). RSC Adv 9(18):10245–10252

  140. McDaniel A, Tonyali B, Yucel U, Trinetta V (2019) Formulation and development of lipid nanoparticle antifungal packaging films to control postharvest disease. J Agric Food Res 1:100013. https://doi.org/10.1016/J.JAFR.2019.100013

    Article  Google Scholar 

  141. Mirdehghan SH, Valero D (2017) Bioactive compounds in tomato fruit and its antioxidant activity as affected by incorporation of Aloe, eugenol, and thymol in fruit package during storage. Int J Food Prop 20:1798–1806. https://doi.org/10.1080/10942912.2016.1223128

    Article  CAS  Google Scholar 

  142. Valverde JM, Guillén F, Martínez-Romero D, Castillo S, Serrano M, Valero D (2005) Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (MAP) and eugenol, menthol, or thymol. J Agric Food Chem 53(19):7458–7464. https://doi.org/10.1021/JF050913I

    Article  CAS  PubMed  Google Scholar 

  143. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Ind Eng Polym Res. 3(1):27–35. https://doi.org/10.1016/j.aiepr.2019.11.002

    Article  Google Scholar 

  144. Cheng J et al (2019) An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocoll 96:546–554. https://doi.org/10.1016/j.foodhyd.2019.06.007

    Article  CAS  Google Scholar 

  145. Talón E, Vargas M, Chiralt A, González-Martínez C (2019) Eugenol incorporation into thermoprocessed starch films using different encapsulating materials. Food Packag Shelf Life 21:100326. https://doi.org/10.1016/j.fpsl.2019.100326

    Article  Google Scholar 

  146. Mlalila N, Hilonga A, Swai H, Devlieghere F, Ragaert P (2018) Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci Technol 74:1–11. https://doi.org/10.1016/j.tifs.2018.01.015

    Article  CAS  Google Scholar 

  147. Ugalde ML et al (2017) Active starch biopolymeric packaging film for sausages embedded with essential oil of Syzygium aromaticum. J Food Sci Technol 54(7):2171–2175. https://doi.org/10.1007/s13197-017-2624-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Garrido-Miranda KA, Rivas BL, Pérez-Rivera MA, Sanfuentes EA, Peña-Farfal C (2018) Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT 98:260–267. https://doi.org/10.1016/j.lwt.2018.08.046

    Article  CAS  Google Scholar 

  149. Rech CR et al (2020) Biodegradation of eugenol-loaded polyhydroxybutyrate films in different soil types. Case Stud Chem Environ Eng. https://doi.org/10.1016/j.cscee.2020.100014

    Article  Google Scholar 

  150. Breloy L et al (2019) β-carotene/limonene derivatives/eugenol: green synthesis of antibacterial coatings under visible-light exposure. ACS Sustain Chem Eng 7(24):19591–19604. https://doi.org/10.1021/acssuschemeng.9b04686

    Article  CAS  Google Scholar 

  151. Sharif HR et al (2017) Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocoll 73:274–283. https://doi.org/10.1016/j.foodhyd.2017.07.002

    Article  CAS  Google Scholar 

  152. Keshwani A, Kharkwal H (2015) Natural polymer based cling films for food packaging Antinociceptive effect of Olmuv and its safety study View project haracterization of Pungent Red Chilies (Capsicum spp.); Cultivars of Manipur and Nagaland, part of Indo-Burma Mega Biodiversity Hotspot View project Natural Polymer Based Cling Films For Food Packaging Bhanu Malhotra, Anu Keshwani, Harsha Kharkwal, 2015 (online). Available: https://www.researchgate.net/publication/273063781.

  153. Muratore F, Barbosa SE, Martini RE (2019) Development of bioactive paper packaging for grain-based food products. Food Packag Shelf Life 20:100317. https://doi.org/10.1016/J.FPSL.2019.100317

    Article  Google Scholar 

  154. Wieczyńska J, Cavoski I (2018) Antimicrobial, antioxidant and sensory features of eugenol, carvacrol and trans-anethole in active packaging for organic ready-to-eat iceberg lettuce. Food Chem 259:251–260. https://doi.org/10.1016/j.foodchem.2018.03.137

    Article  CAS  PubMed  Google Scholar 

  155. Introduction to Biodeterioration - Dennis Allsopp, Kenneth J. Seal, Christine C. Gaylarde - Google Books. https://books.google.co.in/books?hl=en&lr=&id=ML2nTPySTOAC&oi=fnd&pg=PA1&dq=137.%09Allsopp,+D.,+Seal,+K.,+%26+Gaylarde,+C.+(2004).+Introduction+to+Biodeterioration+by+Dennis+Allsopp.+https://doi.org/10.1017/CBO9780511617065&ots=pQnD_BeQfk&sig=PLgDf8vwnvCw4VEsTJizOu8Fdhw&redir_esc=y#v=onepage&q&f=false (Accessed Dec 17, 2021).

  156. Biswas A, Do Socorro Rocha Bastos M, Furtado RF, Kuzniar G, Boddu V, Cheng HN (2020) Evaluation of the properties of cellulose ester films that incorporate essential oils. J. Polym. Sci Int. https://doi.org/10.1155/2020/4620868

    Book  Google Scholar 

  157. Uz M, Altinkaya SA (2011) Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT Food Sci Technol 44(10):2302–2309. https://doi.org/10.1016/j.lwt.2011.05.003

    Article  CAS  Google Scholar 

  158. Gemili S, Yemenicioǧlu A, Altinkaya SA (2009) Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. J Food Eng 90(4):453–462. https://doi.org/10.1016/j.jfoodeng.2008.07.014

    Article  Google Scholar 

  159. Soares NFF, Rutishauser DM, Melo N, Cruz RS, Andrade NJ (2002) Inhibition of microbial growth in bread through active packaging. Packag Technol Sci 15(3):129–132. https://doi.org/10.1002/pts.576

    Article  CAS  Google Scholar 

  160. Aluigi A, Vineis C, Ceria A, Tonin C (2008) Composite biomaterials from fibre wastes: characterization of wool-cellulose acetate blends. Compos Part A Appl Sci Manuf 39(1):126–132. https://doi.org/10.1016/j.compositesa.2007.08.022

    Article  CAS  Google Scholar 

  161. Mura S et al (2011) Innovative composite films of chitosan, methylcellulose, and nanoparticles. J Food Sci 76(7):N54-60. https://doi.org/10.1111/j.1750-3841.2011.02295.x

    Article  CAS  PubMed  Google Scholar 

  162. Yoo S, Krochta JM (2012) Starch-methylcellulose-whey protein film properties. Int J Food Sci Technol 47(2):255–261. https://doi.org/10.1111/j.1365-2621.2011.02833.x

    Article  CAS  Google Scholar 

  163. Zuo M, Song Y, Zheng Q (2009) Preparation and properties of wheat gluten/methylcellulose binary blend film casting from aqueous ammonia: a comparison with compression molded composites. J Food Eng 91(3):415–422. https://doi.org/10.1016/j.jfoodeng.2008.09.019

    Article  CAS  Google Scholar 

  164. Gallo J-AQ, Debeaufort F, Callegarin F, Voilley A (2000) Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films. J Membr Sci 180(1):36–47

    Google Scholar 

  165. Sanla-Ead N, Jangchud A, Chonhenchob V, Suppakul P (2012) Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films. Packag Technol Sci 25(1):7–17. https://doi.org/10.1002/pts.952

    Article  CAS  Google Scholar 

  166. Guynot ME, Ramos AJ, Setó L, Purroy P, Sanchis V, Marín S (2003) Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products. J Appl Microbiol 94(5):893–899

    Article  CAS  PubMed  Google Scholar 

  167. Roy N, Saha N, Kitano T, Saha P (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89(2):346–353. https://doi.org/10.1016/j.carbpol.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  168. Amiri A, Dugas R, Pichot AL, Bompeix G (2008) In vitro and in vitro activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. Int J Food Microbiol 126(1–2):13–19. https://doi.org/10.1016/j.ijfoodmicro.2008.04.022

    Article  CAS  PubMed  Google Scholar 

  169. Nguyen TT, Nguyen TTT, Van Tran T, Van Tan L, Danh LT, Than VT (2021) Development of antibacterial, antioxidant, and UV-barrier chitosan film incorporated with Piper betle linn oil as active biodegradable packaging material. Coatings. https://doi.org/10.3390/coatings11030351

    Article  Google Scholar 

  170. Zhou Q, Li P, Fang S, Liu W, Mei J, Xie J (2019) “Preservative effects of gelatin active coating enriched with eugenol emulsion on Chinese seabass (Lateolabrax maculatus) during superchilling (−09 °C) storage. Coatings 9(8):489. https://doi.org/10.3390/coatings9080489

    Article  CAS  Google Scholar 

  171. Sauperl O, Zemljic LF, Valh JV, Tompa J (2021) Assessment of chemically and enzymatically modified chitosan with eugenol as a coating for viscose functionalization for potential medical use. Text Res J. https://doi.org/10.1177/00405175211021446

    Article  Google Scholar 

  172. Sousa MF, Cerqueira MA, Vicente AA, Cunha LM (2005) Development of active edible coatings for the preservation of Agaricus bisporus mushrooms. Encontro de Química dos Alimentos - Composição Química, Estrutura e Funcionalidade: A Ponte Entre Alimentos Novos e Tradicionais - Abstracts. No. S2-OP1, Lisboa, Portugal, 10–12 September, 57–57, 2014. ISBN: 978-989-98541-5-4

  173. Baygar T (2019) Bioactivity potentials of biodegradable chitosan/gelatin film forming solutions combined with monoterpenoid compounds. J Polym Environ 27(8):1686–1692. https://doi.org/10.1007/s10924-019-01465-4

    Article  CAS  Google Scholar 

  174. Woranuch S, Yoksan R (2013) Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydr Polym 96(2):586–592. https://doi.org/10.1016/j.carbpol.2012.09.099

    Article  CAS  PubMed  Google Scholar 

  175. Woranuch S, Yoksan R (2013) Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr Polym 96(2):578–585. https://doi.org/10.1016/j.carbpol.2012.08.117

    Article  CAS  PubMed  Google Scholar 

  176. Mohammadi A, Hashemi M, Hosseini SM (2016) Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innov Food Sci Emerg Technol 33:580–588. https://doi.org/10.1016/j.ifset.2015.10.015

    Article  CAS  Google Scholar 

  177. Ju J et al (2020) Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation. Food Chem 310:125974. https://doi.org/10.1016/j.foodchem.2019.125974

    Article  CAS  PubMed  Google Scholar 

  178. Watanabe H, Takahashi M, Kihara H, Yoshida M (2018) Biobased coatings based on eugenol derivatives. ACS Appl Bio Mater 1(3):808–813. https://doi.org/10.1021/acsabm.8b00254

    Article  CAS  PubMed  Google Scholar 

  179. Sánchez Aldana D, Andrade-Ochoa S, Aguilar CN, Contreras-Esquivel JC, Nevárez-Moorillón GV (2015) Antibacterial activity of pectic-based edible films incorporated with Mexican lime essential oil. Food Control 50:907–912. https://doi.org/10.1016/j.foodcont.2014.10.044

    Article  CAS  Google Scholar 

  180. Nisar T, Wang ZC, Yang X, Tian Y, Iqbal M, Guo Y (2018) Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int J Biol Macromol 106:670–680. https://doi.org/10.1016/j.ijbiomac.2017.08.068

    Article  CAS  PubMed  Google Scholar 

  181. Çavdaroğlu E, Farris S, Yemenicioğlu A (2020) Development of pectin–eugenol emulsion coatings for inhibition of Listeria on webbed-rind melons: a comparative study with fig and citrus pectins. Int J Food Sci Technol 55(4):1448–1457. https://doi.org/10.1111/ijfs.14458

    Article  CAS  Google Scholar 

  182. Wagle BR et al (2019) Pectin or chitosan coating fortified with eugenol reduces Campylobacter jejuni on chicken wingettes and modulates expression of critical survival genes. Poult Sci 98(3):1461–1471. https://doi.org/10.3382/ps/pey505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti P. More.

Ethics declarations

Conflict of interests

There is no conflict of interest by any of the authors for this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerosenewala, J., Vaidya, P., Ozarkar, V. et al. Eugenol: extraction, properties and its applications on incorporation with polymers and resins—a review. Polym. Bull. 80, 7047–7099 (2023). https://doi.org/10.1007/s00289-022-04414-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04414-9

Keywords

Navigation