Skip to main content

Advertisement

Log in

Batch and column studies for adsorption of naphthalene from its aqueous solution using nanochitosan/sodium alginate composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The current experimental study involves the synthesis and characterization of nanochitosan/sodium alginate composite (NC/Na-Alg) and utilized for the adsorptive removal of naphthalene from its aqueous solution. The NC/Na-Alg was primarily characterized using electron microscopy, Fourier transform spectrometer and X-ray diffractometer analysis. The operating process conditions such as pH, time, initial concentration, composite dosage and temperature were investigated on percentage degradation. The isotherm pattern and kinetic follow-up were fitted well with Freundlich mechanism and pseudo-second order, respectively, and the adsorption equilibrium capacity was estimated to be 55 mg/g. The thermodynamic analysis of adsorption revealed the physical and exothermic process. The column experiments produced optimum values at bed height, inlet flow rate of solution and initial naphthalene concentration of 150 mm, 10 mL/min and 50 mg/L, respectively. Also, the current study exhibited that the application of deacetylation method for NC/Na-Alg synthesis could be a productive approach for competing sequestration of naphthalene in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El-Hefian EA, Nasef MM, Yahaya AH (2014) Chitosan-based polymer blends: Current status and applications. J Chem Soc Pakistan 36:11–27

    CAS  Google Scholar 

  2. da Silva Júnior WF, de Oliveira Pinheiro JG, Moreira CDLFA, et al. (2017) Alternative technologies to improve solubility and stability of poorly water-soluble drugs. Multifunct Syst Comb Deliv Biosens Diagn pp 281–305

  3. Khan MA, Mujahid M (2019) A review on recent advances in chitosan based composite for hemostatic dressings. Int J Biol Macromol, p 138–147

  4. Dragan ES, Dinu MV (2020) Advances in porous chitosan-based composite hydrogels: Synthesis and applications. React Funct Polym p 104372

  5. Hu Z, Zhang DY, Lu ST, et al (2018) Chitosan-based composite materials for prospective hemostatic applications [Internet]. Mar Drugs MDPI AG; Available from: https://pubmed.ncbi.nlm.nih.gov/30081571/.

  6. Rizzi V, Longo A, Fini P et al (2014) Applicative study (part I): the excellent conditions to remove in batch direct textile dyes (direct red, direct blue and direct yellow) from aqueous solutions by adsorption processes on low-cost chitosan films under different conditions. Adv Chem Eng Sci [Internet] 04:454–469. https://doi.org/10.4236/aces.2014.44048

    Article  CAS  Google Scholar 

  7. Sohni S, Hashim R, Nidaullah H et al (2019) Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. Int J Biol Macromol [Internet] 132:1304–1317

    Article  CAS  Google Scholar 

  8. Bajpai SK, Jyotishi P, Bajpai M (2016) Synthesis of nanosilver loaded chitosan/poly(acrylamide-co-itaconic acid) based inter-polyelectrolyte complex films for antimicrobial applications. Carbohydr Polym 154:223–230

    Article  CAS  Google Scholar 

  9. Vijaya Y, Popuri SR, Sankara Reddy G et al (2011) Development and characterization of chitosan coated biopolymer sorbent for the removal of fluoride ion from aqueous solutions. Desalin Water Treat [Internet] 25:159–169. https://doi.org/10.5004/dwt.2011.1209

    Article  CAS  Google Scholar 

  10. Mushi NE, Utsel S, Berglund LA (2014) Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Front Chem [Internet] 2:99. https://doi.org/10.3389/fchem.2014.00099/abstract

    Article  PubMed Central  Google Scholar 

  11. Lawrie G, Keen I, Drew B et al (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules [Internet] 8:2533–2541. https://doi.org/10.1021/bm070014y

    Article  CAS  Google Scholar 

  12. Li T, Shi XW, Du YM et al (2007) Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res - Part A [Internet] 83:383–390

    Article  Google Scholar 

  13. Li P, Dai YN, Zhang JP et al (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci [Internet] 4:221–228

    CAS  Google Scholar 

  14. Ing LY, Zin NM, Sarwar A et al (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:632698–632705. https://doi.org/10.1155/2012/632698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dotto GL, Santos JMN, Tanabe EH et al (2017) Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions. J Clean Prod 144:120–129

    Article  CAS  Google Scholar 

  16. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765–774

    CAS  Google Scholar 

  17. Hassan MA, Tamer TM, Omer AM, Baset WMA et al (2016) Synthesis, characterization and antimicrobialevaluation of two aromatic chitosan Schiff base derivatives. Process Biochem 51(10):1721–1730

    Article  Google Scholar 

  18. Ohya Y, Saiki H, Takahashi Y (1994) Preparation of transparent, electrically conducting ZnO film from zinc acetateand alkoxide. J Mater Sci 29:4099–4103. https://doi.org/10.1007/BF00355977

    Article  CAS  Google Scholar 

  19. Bodmeier, Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, Kim SY (2008) N.acetyl histidine-conjugatedglycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Rel 115:37–45

    Google Scholar 

  20. Liu J, Huang J, Su L et al (2006) Degradation of anthracene, pyrene and benzo[a]anthracene in aqueous solution by chlorine dioxide. Sci China Ser B Chem [Internet] 49:565–572. https://doi.org/10.1007/s11426-006-2036-3

    Article  CAS  Google Scholar 

  21. Nkansah MA, Christy AA, Barth T (2011) The use of anthracene as a model compound in a comparative study of hydrous pyrolysis methods for industrial waste remediation. Chemosphere 84:403–408

    Article  CAS  Google Scholar 

  22. Sharavanan VJ, Sivaramakrishnan M, Sivarajasekar N et al (2020) Pollutants inducing epigenetic changes and diseases [Internet]. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00944-3

    Article  Google Scholar 

  23. Xiao X, Liu D, Yan Y et al (2015) Preparation of activated carbon from Xinjiang region coal by microwave activation and its application in naphthalene, phenanthrene, and pyrene adsorption. J Taiwan Inst Chem Eng 53:160–167

    Article  CAS  Google Scholar 

  24. Sivaprakash S, Kumar PS, Krishna SK, et al (2017) Adsorption study of various dyes on Activated Carbon Fe3O4 Magnetic Nano Composite [Internet]. Int J Appl Chem Available from: http://www.ripublication.com.

  25. Hafsa J, Smach MA, Charfeddine B et al (2016) Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste. Ann Pharm Fr [Internet] 74:27–33

    Article  CAS  Google Scholar 

  26. Sharma G, ALOthman ZA, Kumar A et al (2017) Fabrication and characterization of a nanocomposite hydrogel for combined photocatalytic degradation of a mixture of malachite green and fast green dye. Nanotechnol Environ Eng [Internet] 2:1–7

    Article  CAS  Google Scholar 

  27. Dargahi A, Golestanifar H, Darvishi P et al (2016) An investigation and comparison of removing heavy metals (Lead and chromium) from aqueous solutions using magnesium oxide nanoparticles. Polish J Environ Stud 25:557–562

    Article  CAS  Google Scholar 

  28. Ajitha P, Vijayalakshmi K, Saranya M et al (2017) Removal of toxic heavy metal lead (II) using chitosan oligosaccharide-graft-maleic anhydride/polyvinyl alcohol/silk fibroin composite. Int J Biol Macromol 104:1469–1482

    Article  CAS  Google Scholar 

  29. Venkatesan J, Lee JY, Kang DS et al (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525

    Article  CAS  Google Scholar 

  30. Vinodhini PA, Sangeetha K, Thandapani G et al (2017) FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes. Int J Biol Macromol 104:1721–1729

    Article  CAS  Google Scholar 

  31. Pandima Devi M, Sekar M, Chamundeswari M et al (2012) A novel wound dressing material-fibrin-chitosan-sodium alginate composite sheet. Bull Mater Sci 35(7):1157–1163

    Article  CAS  Google Scholar 

  32. Liao J, Li Y, Li H et al (2018) Preparation, bioactivity and mechanism of nano-hydroxyapatite/sodium alginate/chitosan bone repair material. J Appl Biomater Funct Mater [Internet] 16:28–35. https://doi.org/10.5301/jabfm.5000372

    Article  CAS  Google Scholar 

  33. Anitha T, Senthil Kumar P, Sathish Kumar K (2016) Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of Eosin Yellow dye from aqueous solution. J Water Process Eng [Internet] 13:127–136. Available from: https://www.infona.pl//resource/bwmeta1.element.elsevier-c5c9c078-0a08-3e49-b3d3-abf857d66fc7

  34. Muthusaravanan S, Balasubramani K, Suresh R et al (2021) Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations. Environ Res 200:111428

    Article  CAS  Google Scholar 

  35. Venkatesha TG, Nayaka YA, Chethana BK (2013) Adsorption of Ponceau S from aqueous solution by MgO nanoparticles. Appl Surf Sci 276:620–627

    Article  CAS  Google Scholar 

  36. Balasubramani K, Sivarajasekar N, Naushad M (2020) Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling. J Mol Liq 301:112426

    Article  CAS  Google Scholar 

  37. Shahat A, Hassan HMA, Azzazy HME et al (2018) Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media. Chem Eng J 331:54–63

    Article  CAS  Google Scholar 

  38. Di DC, Chen CW, Hung CM (2017) Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour Technol [Internet] 245:188–195

    Article  Google Scholar 

  39. Mittal H, Kumar V, Saruchi SS et al (2016) Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel. Int J Biol Macromol [Internet] 89:1–11

    Article  CAS  Google Scholar 

  40. Rambabu K, AlYammahi J, Bharath G et al (2021) Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide. Chemosphere 282:131103

    Article  CAS  Google Scholar 

  41. Faisal AAH, Ahmed DN, Rezakazemi M et al (2021) Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline. J Environ Chem Eng 9:105194

    Article  CAS  Google Scholar 

  42. Muthusaravanan S, Sivarajasekar N, Vivek JS et al (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements [Internet]. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0762-3

    Article  Google Scholar 

  43. Asgari G, Roshani B, Ghanizadeh G (2012) The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J Hazard Mater [Internet] 217–218:123–132

    Article  Google Scholar 

  44. Chieng HI, Lim LBL, Priyantha N (2015) Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalin Water Treat [Internet]. 55:664–677. https://doi.org/10.1080/19443994.2014.919609

    Article  CAS  Google Scholar 

  45. Fil BA, Boncukcuoğlu R, Yilmaz AE et al (2012) Adsorption of Ni(II) on ion exchange resin: kinetics, equilibrium and thermodynamic studies. Korean J Chem Eng [Internet] 29:1232–1238. https://doi.org/10.1007/s11814-012-0012-5

    Article  CAS  Google Scholar 

  46. Abdolali A, Ngo HH, Guo W et al (2017) Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour Technol [Internet] 229:78–87

    Article  CAS  Google Scholar 

  47. Sivarajasekar N, Mohanraj N, Baskar R et al (2018) Fixed-bed adsorption of ranitidine hydrochloride onto microwave assisted—activated aegle marmelos correa fruit shell: statistical optimization and breakthrough modelling. Arab J Sci Eng [Internet]. 43:2205–2215. https://doi.org/10.1007/s13369-017-2565-4

    Article  CAS  Google Scholar 

  48. Alimohammadi Z, Younesi H, Bahramifar N (2016) Batch and column adsorption of reactive red 198 from textile industry effluent by microporous activated carbon developed from walnut shells. Waste Biomass Valoriz 7:1255–1270

    Article  CAS  Google Scholar 

  49. Sivarajasekar N, Balasubramani K, Mohanraj N et al (2017) Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos Correa fruit shell: Statistical optimization, process design and breakthrough modeling. J Mol Liq 241:823–830

    Article  CAS  Google Scholar 

  50. Sivarajasekar N, Mohanraj N, Balasubramani K, et al (2017) Optimization, equilibrium and kinetic studies on ibuprofen removal onto microwave assisted—activated Aegle marmelos correa fruit shell. Desalin Water Treat [Internet]. 84:48–58. Available from: https://www.researchgate.net/publication/320497635

  51. Yan J, Xue Y, Long L et al (2018) Adsorptive removal of As(V) by crawfish shell biochar: batch and column tests. Environ Sci Pollut Res [Internet] 25:34674–34683. https://doi.org/10.1007/s11356-018-3384-1

    Article  CAS  Google Scholar 

  52. Ealias AM, Saravanakumar MP (2020) Application of protein-functionalised aluminium nanosheets synthesised from sewage sludge for dye removal in a fixed-bed column: Investigation on design parameters and kinetic models. Environ Sci Pollut Res [Internet]. 27:2955–2976. https://doi.org/10.1007/s11356-019-07139-x

    Article  CAS  Google Scholar 

  53. Ye Y, Jiao J, Kang D et al (2019) The adsorption of phosphate using a magnesia–pullulan composite: kinetics, equilibrium, and column tests. Environ Sci Pollut Res [Internet] 26:13299–13310. https://doi.org/10.1007/s11356-019-04858-z

    Article  CAS  Google Scholar 

  54. Sundararaman S, Deivasigamani P, Gopakumaran N et al (2020) Amalgamation and application of nano chitosan cross-linked with fish scales based activated carbon as an adsorbent for the removal of reactive dye (RB9). IET Nanobiotechnol [Internet] 14:289–299. https://doi.org/10.1049/iet-nbt.2019.0302

    Article  Google Scholar 

Download references

Acknowledgements

We would acknowledge our heartfelt thanks to the Management of Sathyabama Institute of Science and Technology, Chennai, and Salalah College of Technology, Salalah, for the wonderful opportunity, continuing support and encouragement by providing necessary facilities for executing the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. S. Naveen Prasad or S. Sivamani.

Ethics declarations

Conflict of interest

We declare no conflict of interest with anyone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathish, S., Prasad, B.S.N., Kumar, J.A. et al. Batch and column studies for adsorption of naphthalene from its aqueous solution using nanochitosan/sodium alginate composite. Polym. Bull. 79, 8695–8715 (2022). https://doi.org/10.1007/s00289-021-03926-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03926-0

Keywords

Navigation