Skip to main content

Advertisement

Log in

Simulating release model and antimicrobial efficiency of LDPE film carrying ferula asafetida leaf and gum extracts

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The development of antimicrobial LDPE films containing ferula hydroalcoholic leaf and gum extracts was investigated. At the end of the 10th day, the highest rate of the released flavonoid compounds was related to the films containing 5% leaf extracts (PE-Leaf-5, 3663.71 µg/g) for 95% ethanol simulation at 60 °C. The carvacrol acetate and β-Elemene in the 95% ethanol simulation containing PE-Leaf and α-bisabolol in the simulation including a film containing gum extract (PE-Gum) were not found. The highest effect of the antimicrobial property was related to the PE-Leaf films, but the highest rate of release of the compounds was related to the PE-Gum films. At the end of day 14th, the growth rate of Aspergillus niger in the presence of the PE-Leaf-5 and PE-Gum-5 films was reduced 3.23 and 3.72 logarithmic cycles, respectively. At the end of day 10th at 4ºC, the total fungi count has reduced 0.89 and 0.85 logarithmic cycles in the dough samples packed with PE-Leaf and PE-Gum films, respectively while after 6 days preservation at 25°C, they reduced 1.51 and 1.68 logarithmic cycles, respectively. It seems the development of antimicrobial films containing ferula bioactive compounds can be effective in prolonging the shelf life of the foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The permitted part of data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Mulla M, Ahmed J, Al-Attar H, Castro-Aguirre E, Arfat YA, Auras R (2017) Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Cont 73:663–671

    Article  CAS  Google Scholar 

  2. Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62(3):373–380

    Article  CAS  Google Scholar 

  3. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126. https://doi.org/10.1016/S1466-8564(02)00012-7

    Article  CAS  Google Scholar 

  4. Dias MV, de Medeiros HS, Soares NdFF, de Melo NR, Borges SV, Carneiro JdDS, de Assis Kluge JMT (2013) Development of low-density polyethylene films with lemon aroma. LWT-Food Sci Technol 50(1):167–171

    Article  CAS  Google Scholar 

  5. Kechichian V, Ditchfield C, Veiga-Santos P, Tadini CC (2010) Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT - Food Sci Technol 43(7):1088–1094. https://doi.org/10.1016/j.lwt.2010.02.014

    Article  CAS  Google Scholar 

  6. Balaguer MP, Lopez-Carballo G, Catala R, Gavara R, Hernandez-Munoz P (2013) Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. Int J Food Microbiol 166(3):369–377. https://doi.org/10.1016/j.ijfoodmicro.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  7. Wattananawinrat K, Threepopnatkul P, Kulsetthanchalee C (2014) Morphological and thermal properties of ldpe/eva blended films and development of antimicrobial activity in food packaging film. Energy Procedia 56:1–9. https://doi.org/10.1016/j.egypro.2014.07.125

    Article  CAS  Google Scholar 

  8. Rosen-Kligvasser J, Suckeveriene RY, Tchoudakov R, Narkis M (2017) LLDPE films containing monoester of oleic acid grafted to silica particles as durable antifog additives. Polym Adv Technol 28(8):931–939

    Article  CAS  Google Scholar 

  9. Shakiba A, Kavoosi GH, Niazi A, Mousavi Nasab M (2013) Properties of gelatin film mixed with bitter ferula essential oil for food packaging. Shiraz University, Iran, Biothechnology

    Google Scholar 

  10. Lamnaouer D, Omari M, Mounir A, El-Alouani M (1990) Anticoagulant activity of Ferula communis L. in sheep. Maghreb Vétérinaire 5(21):5–10

    Google Scholar 

  11. Rashed Mohassel MH (1999) Khorasan herbs. Report of second step. Iranian J Herbarium 4:1–4

    Google Scholar 

  12. Fatehi M, Farifteh F, Fatehi-Hassanabad Z (2004) Antispasmodic and hypotensive effects of ferula asafoetida gum extract. J Ethnopharmacol 91(2):321–324. https://doi.org/10.1016/j.jep.2004.01.002

    Article  PubMed  Google Scholar 

  13. D. E, Scholz D, (1990) Das Zauberbchlein der Gyani Dolma. Pharmazie in Userer Zeit 19:141–152

    Article  Google Scholar 

  14. Dehpour AA, Ebrahimzadeh MA, Fazel NS, Mohammad NS (2009) Antioxidant activity of the methanol extract of ferula assafoetida and its essential oil composition. Grasas Aceites 60(4):405–412

    Article  CAS  Google Scholar 

  15. Amalraj A, Gopi S (2017) Biological activities and medicinal properties of asafoetida: a review. J Tradit Complement Med 7(3):347–359

    Article  Google Scholar 

  16. Iranshahy M, Iranshahi M (2011) Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—A review. J Ethnopharmacol 134(1):1–10

    Article  CAS  Google Scholar 

  17. Takeoka GR, Güntert M, Engel K-H (2001) Aroma active compounds in foods: chemistry and sensory properties. ACS Publications,

  18. Rahman I, Gul S, Odhano EA (2008) Antimicrobial activities of Ferula assafoetida oil against gram positive and gram negative bacteria. Am-Eurasian J Agri 4:203–206

    Google Scholar 

  19. Shrivastava V, Bhardwaj U, Sharma V, Mahajan N, Sharma V, Shrivastava G (2012) Antimicrobial activities of asafoetida resin extracts (a potential Indian spice). J Pharm Res 5(10):5022–5024

    Google Scholar 

  20. Angelini P, Pagiotti R, Venanzoni R, Granetti B (2009) Antifungal and allelopathic effects of Asafoetida against Trichoderma harzianum and Pleurotus spp. Allelopathy J 23(2):357–368

    Google Scholar 

  21. Davoudi Moghadam H, Sani AM, Mehraban Sangatash M (2014) Effect of Oleo-Gum Resin of ferula assafoetida on growth of some food and crop contaminating microbes. Int J Adv Biol Biomed Res (IJABBR) 2(11):2788–2794

    Google Scholar 

  22. Patil S, Shinde S, Kandpile P, Jain A (2015) Evaluation of antimicrobial activity of asafoetida. Int J Pharm Sci Res 6(2):722

    Google Scholar 

  23. Fani MM, Bazargani A, Farboodniay JMA, Hasanpour Z, Zamani K, Yousefi ME (2015) An in vitro study on the antibacterial effect of Ferula assa-foetida L and Quercus infectoria Olivier extracts on Streptococcus mutans and Streptococcus sanguis. Avicenna J Dental Res 7(1):1–5

    Article  Google Scholar 

  24. Niazmand R, Razavizadeh BM, Sabbagh F (2020) Low-density polyethylene films carrying ferula asafoetida extract for active food packaging: thermal, mechanical, optical, barrier, and antifungal properties. Adv Polym Technol 2020:4098472. https://doi.org/10.1155/2020/4098472

    Article  CAS  Google Scholar 

  25. Sangatash MM, Niazmand R, Jamab MS, Modaressi AS (2016) Development of antioxidant active films containing sodium ascorbate (SA) and ethylene vinyl alcohol (EVOH) to extend the shelf life of peanut. J Food Sci Technol 53(4):1766–1783

    Article  CAS  Google Scholar 

  26. Ahmadian-Kouchaksaraie Z, Niazmand R, Najafi MN (2016) Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. Innov Food Sci Emerg Technol 36:234–244

    Article  CAS  Google Scholar 

  27. Ordonez A, Gomez J, Vattuone M (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97(3):452–458

    Article  CAS  Google Scholar 

  28. Kavoosi G, Rowshan V (2013) Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: effect of collection time. Food Chem 138(4):2180–2187

    Article  CAS  Google Scholar 

  29. Tomaino A, Martorana M, Arcoraci T, Monteleone D, Giovinazzo C, Saija A (2010) Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 92(9):1115–1122

    Article  CAS  Google Scholar 

  30. Ahmadian-Kouchaksaraie Z, Niazmand R (2017) Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: optimization using response surface methodology. The Journal of Supercritical Fluids 121:19–31

    Article  CAS  Google Scholar 

  31. Niazmand R, Razavizadeh BM (2020) Ferula asafoetida: chemical composition, thermal behavior, antioxidant and antimicrobial activities of leaf and gum hydroalcoholic extracts. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04724-8

    Article  PubMed  Google Scholar 

  32. Ugalde ML, de Cezaro AM, Vedovatto F, Paroul N, Steffens J, Valduga E, Backes GT, Franceschi E, Cansian RL (2017) Active starch biopolymeric packaging film for sausages embedded with essential oil of Syzygium aromaticum. J Food Sci Technol 54(7):2171–2175

    Article  CAS  Google Scholar 

  33. Chaaban H, Ioannou I, Chebil L, Slimane M, Gérardin C, Paris C, Charbonnel C, Chekir L, Ghoul M (2017) Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J Food Process Preserv 41(5):e13203. https://doi.org/10.1111/jfpp.13203

    Article  CAS  Google Scholar 

  34. Dall’Acqua S, Miolo G, Innocenti G, Caffieri S (2012) The photodegradation of quercetin: relation to oxidation. Molecules 17(8):8898–8907. https://doi.org/10.3390/molecules17088898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gherardi R, Becerril R, Nerin C, Bosetti O (2016) Development of a multilayer antimicrobial packaging material for tomato puree using an innovative technology. LWT-Food Sci Technol 72:361–367

    Article  CAS  Google Scholar 

  36. Mousavi SRJ, Niazmand R (2017) Fatty acids composition and oxidation kinetic parameters of purslane (Portulaca oleracea) seed oil. Agri res 6(4):421–426

    Article  CAS  Google Scholar 

  37. Arrieta MP, Castro-Lopez MdM, Rayón E, Barral-Losada LF, López-Vilariño JM, López J, González-Rodríguez MV (2014) Plasticized poly (lactic acid)–poly (hydroxybutyrate)(PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. J Agri Food Chem 62(41):10170–10180

    Article  CAS  Google Scholar 

  38. Adilah ZM, Jamilah B, Hanani ZN (2018) Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll 74:207–218

    Article  Google Scholar 

  39. Pezo D, Navascués B, Salafranca J, Nerín C (2012) Analytical procedure for the determination of Ethyl Lauroyl Arginate (LAE) to assess the kinetics and specific migration from a new antimicrobial active food packaging. Anal Chim Acta 745:92–98

    Article  CAS  Google Scholar 

  40. da Silva DG, Funck GD, dos Santos Cruxen CE, de Lima MJ, da Silva WP, Fiorentini ÂM (2017) Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: potential for application as active packaging for sliced cheese. LWT-Food Sci Technol 81:314–318

    Article  Google Scholar 

  41. Liang S, Wang L (2018) A natural antibacterial-antioxidant film from soy protein isolate incorporated with cortex phellodendron extract. Polymers 10(1):71

    Article  Google Scholar 

  42. Akrami F, Rodríguez-Lafuente A, Bentayeb K, Pezo D, Ghalebi S, Nerín C (2015) Antioxidant and antimicrobial active paper based on Zataria (Zataria multiflora) and two cumin cultivars (Cuminum cyminum). LWT-Food Sci Technol 60(2):929–933

    Article  CAS  Google Scholar 

  43. Jafarzadeh S, Rhim JW, Alias AK, Ariffin F, Mahmud S (2019) Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano-kaolin to maintain the quality of low-moisture mozzarella cheese during low-temperature storage. J Sci Food Agric 99(6):2716–2725

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge Iran National Science Foundation (INSF) for financial support of this work (Grant No. 9411113).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis, writing—original draft and review of the final manuscript were done by Niazmand; investigation, resources and writing were done by Razavizadeh; English translation and editing by Sabagh. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Razieh Niazmand.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazmand, R., Razavizadeh, B.M. & Sabbagh, F. Simulating release model and antimicrobial efficiency of LDPE film carrying ferula asafetida leaf and gum extracts. Polym. Bull. 79, 1151–1174 (2022). https://doi.org/10.1007/s00289-021-03554-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03554-8

Keywords

Navigation