Skip to main content

Advertisement

Log in

Preparation of a novel polyurethane network based on PPG–PGN–PPG: investigation of the effect of plasticizers on its properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this research to improve the thermal and mechanical properties of polyglycidyl nitrate (PGN)-based energetic polyurethane network was used a novel flexible chain triblock copolymer based on polypropylene glycol–poly glycidyl nitrate–polypropylene glycol (PPG–PGN–PPG). Energetic polyurethane was prepared by curing of the triblock copolymer with different curing agents (TDI, IPDI, N100, IPDI/N100) and different NCO/OH ratios. To evaluate the effect of plasticizer on the thermo-mechanical properties of the polyurethane, the compatibility of copolymer with three energetic plasticizers, including n‐butyl nitroxyethyl nitramine (BuNENA), trimethylol ethane trinitrate (TMETN), and 1,2,4-butanetriol trinitrate (BTTN) was studied using the swelling test and thermal analysis. The results indicate that BuNENA is more compatible with this copolymer than other plasticizers. The mechanical properties effect of the BuNENA plasticizer on the polyurethane network was investigated using dynamic mechanical analysis as well as the tensile test. The IPDI/N100 curing agents-polyurethane mixture, demonstrated appropriate mechanical properties (0.35 MPa stress and 70% elongation) that make it a suitable binder system comparison with pure PGN (unstable and de-cured). Also the mechanical properties of the prepared polyurethane containing 15 wt% BuNENA showed 0.17 MPa stress and 98% elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155. https://doi.org/10.1080/15583720701834224

    Article  CAS  Google Scholar 

  2. Kurimoto Y, Takeda M, Doi S, Tamura Y, Ono H (2001) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresourtechnol 77:33–40. https://doi.org/10.1016/S0960-8524(00)00136-X

    Article  CAS  Google Scholar 

  3. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chemi 12:1893–1909. https://doi.org/10.1039/C0GC00264J

    Article  CAS  Google Scholar 

  4. Ma M, Kwon Y (2018) Reactive energetic plasticizers utilizing Cu-free azide-alkyne 1, 3-dipolar cycloaddition for in-situ preparation of poly (THF-co-GAP)-based polyurethane energetic binders. Polymers 10:516–531. https://doi.org/10.3390/polym10050516

    Article  CAS  PubMed Central  Google Scholar 

  5. Mahanta AK, Pathak DD (2012) HTPB-polyurethane: a versatile fuel binder for composite solid propellant, vol 1. InTech Open, London, pp 229–262. https://doi.org/10.5772/47995

    Book  Google Scholar 

  6. Kawamoto AM, Oliveira JIS, Dutra RdCL, Rezende LC, Keicher T, Krause H (2009) Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations. J Aerosp Technol Manag 1:35–42. https://doi.org/10.5028/jatm.2009.01013542

    Article  CAS  Google Scholar 

  7. Sanghavi R, Asthana S, Karir J, Singh H (2001) Studies on thermoplastic elastomers based RDX-propellant compositions. J Energy Mater 19:79–95. https://doi.org/10.1080/07370650108219393

    Article  CAS  Google Scholar 

  8. Desai H, Cunliffe A, Lewis T, Millar R, Paul N, Stewart M, Amass A (1996) Synthesis of narrow molecular weight α, ω-hydroxy telechelic poly (glycidyl nitrate) and estimation of theoretical heat of explosion. Polymer 37:3471–3476. https://doi.org/10.1016/0032-3861(96)88499-0

    Article  CAS  Google Scholar 

  9. Ding Y, Hu C, Guo X, Che Y, Huang J (2014) Structure and mechanical properties of novel composites based on glycidyl azide polymer and propargyl-terminated polybutadiene as potential binder of solid propellant. J Appl Polym Sci 131:40007. https://doi.org/10.1002/app.40007

    Article  CAS  Google Scholar 

  10. Pisharath S, Ang HG (2007) Synthesis and thermal decomposition of GAP-poly (BAMO) copolymer. Polym Degrad Stab 92:1365–1377. https://doi.org/10.1016/j.polymdegradstab.2007.03.016

    Article  CAS  Google Scholar 

  11. Kanti Sikder A, Reddy S (2013) Review on energetic thermoplastic elastomers (ETPEs) for military science. Propellant Explos Pyrotech 38:14–28. https://doi.org/10.1002/prep.201200002

    Article  CAS  Google Scholar 

  12. Zhang Z, Luo N, Wang Z, Luo Y (2015) Polyglycidyl nitrate (PGN)-based energetic thermoplastic polyurethane elastomers with bonding functions. J Appl Polym Sci 132:42026. https://doi.org/10.1002/app.42026

    Article  CAS  Google Scholar 

  13. Paraskos AJ (2017) Energetic polymers: synthesis and applications. In: Energy mater. Springer, pp 91–134. https://doi.org/https://doi.org/10.1007/978-3-319-59208-4_4

  14. Leeming WBH, Marshall E J, Bull H, Rodgers MJ, Paul NC (1996) An investigation into polyGLYN cure stability. In: Proceedings of the 27th international annual conference of ICT. Karlsruhe, pp 99/1–99/5

  15. Paraskos AJ, Dewey MA, Edwards W (2010) One pot procedure for poly (glycidyl nitrate) end modification. US Patent 7714078

  16. Wei W, Shi-min H, De-liang Z, Jin-qiang X, Bingkun S, Yan-lu X, Bo W (2017) Synthesis and curing of epoxy-terminated poly(glycidyl nitrate). Chin J Energy Mater 25(1):49–52. https://doi.org/10.11943/j.issn.1006-9941.2017.01.008

    Article  CAS  Google Scholar 

  17. Abrishami F, Zohari N, Zeynali V (2019) Synthesis and kinetic study on the thermal degradation of triblock copolymer of polycaprolactone-poly (glycidyl nitrate)- polycaprolactone (PCL-PGN-PCL) as an energetic binder. Polym Adv Technol 30(3):640–647. https://doi.org/10.1002/pat.4500

    Article  CAS  Google Scholar 

  18. Bayat Y, Razghi MA, Ghorbani M, Ghadiri A, Mossahebi MM, Dehghani H (2015) Synthesis of tri-block polycaprolactone-poly glycidylnitratepolycaprolactone as polyol propellant binder. J Energy Mater 10(2):25–34

    Google Scholar 

  19. Khanlari T, Bayat Y, Bayat M (2020) Synthesis, thermal stability and kinetic decomposition of triblock copolymer polypropylene glycol–poly glycidyl nitrate–polypropylene glycol (PPG–PGN–PPG). Polym Bull 77:5859–5878. https://doi.org/10.1007/s00289-019-03051-z

    Article  CAS  Google Scholar 

  20. Chi MS (1981) Compatibility of cross-linked polymers with plasticizers by glass transition temperature measurement and swelling tests. J PolymSciPolymChem 19:1767–1779. https://doi.org/10.1002/pol.1981.170190716

    Article  CAS  Google Scholar 

  21. Kumari D, Balakshe R, Banerjee S, Singh H (2012) Energetic plasticizers for gun and rocket propellants. Rev J Chem 2:240–262. https://doi.org/10.1134/s207997801203003x

    Article  Google Scholar 

  22. Kohga M (2009) From cross-linking to plasticization-characterization of glycerin/HTPB blends. Propellant ExplosPyrotech 34:436–443. https://doi.org/10.1002/prep.200800023

    Article  CAS  Google Scholar 

  23. Bohn MA (1999) Determination of the kinetic data of the thermal decomposition of energetic plasticizers and binders by adiabatic self heating. Thermochim Acta 337:121–139. https://doi.org/10.1016/S0040-6031(99)00150-1

    Article  CAS  Google Scholar 

  24. Chen Y, Kwon Y, Kim JS (2012) Synthesis and characterization of bis (2, 2-dinitropropyl ethylene) formal plasticizer for energetic binders. J Ind Eng Chem 18:1069–1075. https://doi.org/10.1016/j.jiec.2011.12.006

    Article  CAS  Google Scholar 

  25. Provatas A (2003) Energetic plasticizer migration studies. Energy Mater 21:237–245. https://doi.org/10.1080/713770435

    Article  CAS  Google Scholar 

  26. Marcilla A, García S, Garcia-Quesada JC (2008) Migrability of PVC plasticizers. Polym Test 27:221–233. https://doi.org/10.1016/j.polymertesting.2007.10.007

    Article  CAS  Google Scholar 

  27. Zhang X, Li Y, Hankett JM, Chen Z (2015) The molecular interfacial structure and plasticizer migration behavior of “green” plasticized poly (vinyl chloride). Phys Chem Chem Phys 17:4472–4482. https://doi.org/10.1039/C4CP05287K

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Y, Long X, Wei X (2011) Theoretical study on the diffusive transport of 2, 4,6-trinitrotoluene in polymer-bonded explosive. J Mol Model 17:3015–3019. https://doi.org/10.1007/s00894-011-0977-8

    Article  CAS  PubMed  Google Scholar 

  29. Trache D, Khimeche K (2013) Study on the influence of ageing on chemical and mechanical properties of N,N′-dimethyl-N,N′-diphenylcarbamide stabilized propellants. J Therm Anal Calorim 111:305–312. https://doi.org/10.1007/s10973-012-2320-8

    Article  CAS  Google Scholar 

  30. Dong Q, Li H, Liu X, Huang C (2018) Thermal and rheological properties of PGN, PNIMMO and P (GN/NIMMO) synthesized via mesylate precursors. Propellant Explos Pyrotech 43(3):294–299. https://doi.org/10.1002/prep.201700201

    Article  CAS  Google Scholar 

  31. Chizari M, Bayat Y (2019) Designing a Highly Energetic PCL-GAP-PCL-based PU Elastomer; Investigation of the Effect of Plasticizers on Its Properties. Cent. Eur. J. Energ. Mater 16:33–48. https://doi.org/10.22211/cejem/104386

    Article  CAS  Google Scholar 

  32. Standard A.S.T.M (2010) D638-10. Standard test methods for tensile properties of plastics.ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0638-10

  33. Standard A.S.T.M (2000) D 3616. Standard Test method for rubber, Raw—determination of gel, swelling index, and dilute solution viscosity. ASTM International, West Conshohocken, PA

  34. Bansod ND, Kapgate BP, Das C, Basu D, Debnath SC, Roy K, Wiessner S (2015) Controlled growth of in situ silica in a NR/CR blend by a solution sol–gel method and the studies of its composite properties. RSC Adv 5:53559–53568. https://doi.org/10.1039/C5RA08971A

    Article  CAS  Google Scholar 

  35. Kamali E, Shahidzadeh M (2015) Investigation of mechanical and thermal properties of copolyurethane based on different proportional amounts of gap/ppg. J Energy Mater 10:3–15

    Google Scholar 

  36. Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154. https://doi.org/10.1002/pen.760140211

    Article  CAS  Google Scholar 

  37. Ma M, Shen Y, Kwon Y (2020) Fabrication of polyurethane binders grafted with functional reactive plasticizers by a catalyst-free click reaction. J Polym Sci 58:402–412. https://doi.org/10.1002/pol.20190088

    Article  CAS  Google Scholar 

  38. Shee SK, Reddy ST, Athar J, Sikder AK, Talawar M, Banerjee S, Khan MAS (2015) Probing the compatibility of energetic binder poly-glycidyl nitrate with energetic plasticizers: thermal, rheological and DFT studies. RSC Adv 5(123):101297–101308. https://doi.org/10.1039/C5RA16476A

    Article  CAS  Google Scholar 

  39. Zhang C, Madbouly SA, Kessler MR (2015) Biobased polyurethanes prepared from different vegetable oils. ACS Appl Mater Interfaces 7:1226–1233. https://doi.org/10.1021/am5071333

    Article  CAS  PubMed  Google Scholar 

  40. Barszczewska-Rybarek IM, Korytkowska-Wałach A, Kurcok M, Chladek G, Kasperski J (2017) DMA analysis of the structure of crosslinked poly (methyl methacrylate) s. ActaBioengBiomech 19:47–53. https://doi.org/10.5277/ABB-00590-2016-01

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Bayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanlari, T., Bayat, Y. & Bayat, M. Preparation of a novel polyurethane network based on PPG–PGN–PPG: investigation of the effect of plasticizers on its properties. Polym. Bull. 79, 709–724 (2022). https://doi.org/10.1007/s00289-020-03518-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03518-4

Keywords

Navigation