Skip to main content

Advertisement

Log in

Assessment of a new dual effective combo polymer structure for separation of lysozyme from hen egg white

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Water-soluble O-carboxymethyl chitosan (O-CMCS) Schiff base granules were prepared, and Cu2+ ions were decorated. Then, dual effective combo cryogel structures were prepared by free radical polymerization using Cu2+-O-CMCS granules as embedding agent. 2-Hydroxyethyl methacrylate and N,N′-methylene-bis-acrylamide were used as monomer and cross-linker pair, respectively. Prepared combo structures were characterized by FTIR, SEM and swelling tests measurements, and investigated for lysozyme adsorption. Maximum lysozyme adsorption was observed in phosphate buffer of pH 8.0 as 103.3 mg/g with initial lysozyme concentration of 3 mg/mL. On the other hand, the most efficient adsorption was carried out at 0.5 mL/min, at 25 °C. It was also observed that combo cryogels could be repeatedly used for adsorption and desorption cycles of lysozyme molecules. The purification efficiency of adsorbent was highlighted as 83.4% with 88.2% purification yield from hen egg white via sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ye J, Wang C, Chen X, Guo S, Sun M (2008) Marine lysozyme from a marine bacterium that inhibits angiogenesis and tumor growth. Appl Microbiol Biotechnol 77(6):1261–1267. https://doi.org/10.1007/s00253-007-1269-1

    Article  CAS  PubMed  Google Scholar 

  2. Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Annu Rev Food Sci Technol 3:381–403. https://doi.org/10.1146/annurev-food-022811-101241

    Article  CAS  PubMed  Google Scholar 

  3. Franzreb M, Siemann-Herzberg M, Hobley TJ, Thomas OR (2006) Protein purification using magnetic adsorbent particles. Appl Microbiol Biotechnol 70(5):505–516. https://doi.org/10.1007/s00253-006-0344-3

    Article  CAS  PubMed  Google Scholar 

  4. Odabaşi M, Say R, Denizli A (2007) Molecular imprinted particles for lysozyme purification. Mater Sci Eng C 27(1):90–99. https://doi.org/10.1016/j.msec.2006.03.002

    Article  CAS  Google Scholar 

  5. Eldin MM, Rahman SA (2017) Novel immobilized Cu+2 ion grafted cellophane membranes for affinity separation of His-Tag Chitinase. Arab J Chem 10:S3652–S3663. https://doi.org/10.1016/j.arabjc.2014.04.004

    Article  CAS  Google Scholar 

  6. Yavuz H, Odabaşi M, Akgöl S, Denizli A (2005) Immobilized metal affinity beads for ferritin adsorption. J Biomater Sci Polym Ed 16(5):673–684. https://doi.org/10.1163/1568562053783713

    Article  CAS  PubMed  Google Scholar 

  7. Odabaşi M, Garipcan B, Denizli A (2003) Preparation of a novel metal-chelate affinity beads for albumin isolation from human plasma. J Appl Polym Sci 90(10):2840–2847. https://doi.org/10.1002/app.12993

    Article  CAS  Google Scholar 

  8. Ünlü N, Ceylan Ş, Erzengin M, Odabaşı M (2011) Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels. J Sep Sci 34(16–17):2173–2180. https://doi.org/10.1002/jssc.201100269

    Article  CAS  PubMed  Google Scholar 

  9. Cömert ŞC, Odabaşı M (2014) Investigation of lysozyme adsorption performance of Cu2+-attached PHEMA beads embedded cryogel membranes. Mater Sci Eng C 34:1–8. https://doi.org/10.1016/j.msec.2013.09.033

    Article  CAS  Google Scholar 

  10. Acet Ö, Aksoy NH, Erdönmez D, Odabaşı M (2018) Determination of some adsorption and kinetic parameters of α-amylase onto Cu+2-PHEMA beads embedded column. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2018.1501378

    Article  PubMed  Google Scholar 

  11. Acet Ö, Baran T, Erdönmez D, Aksoy NH, Alacabey İ, Menteş A, Odabaşi M (2018) O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme. J Chromatogr A 1550:21–27. https://doi.org/10.1016/j.chroma.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  12. Odabaşı M, Baydemir G, Karataş M, Derazshamshir A (2010) Preparation and characterization of metal-chelated poly (HEMA-MAH) monolithic cryogels and their use for DNA adsorption. J Appl Polym Sci 116(3):1306–1312. https://doi.org/10.1002/app.31505

    Article  CAS  Google Scholar 

  13. Ceylan Ş, Odabaşı M (2013) Novel adsorbent for DNA adsorption: Fe3+-attached sporopollenin particles embedded composite cryogels. Artif Cells Nanomed Biotechnol 41(6):376–383. https://doi.org/10.3109/21691401.2012.759125

    Article  CAS  PubMed  Google Scholar 

  14. Gurbuz F, Ceylan Ş, Odabaşı M, Codd GA (2016) Hepatotoxic microcystin removal using pumice embedded monolithic composite cryogel as an alternative water treatment method. Water Res 90:337–343. https://doi.org/10.1016/j.watres.2015.12.042

    Article  CAS  PubMed  Google Scholar 

  15. Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N (2019) Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf B Biointerfaces 182:110354–110362

    Article  CAS  Google Scholar 

  16. Odabaşı M (2011) Magnetic dye-affinity beads for human serum albumin purification. Prep Biochem Biotechnol 41(3):287–304

    Article  Google Scholar 

  17. Odabaşı M, Uzun L, Denizli A (2004) Porous magnetic chelator support for albumin adsorption by immobilized metal affinity separation. J Appl Polym Sci 93(5):2501–2510

    Article  Google Scholar 

  18. Erzengin M, Ünlü N, Odabaşı M (2011) A novel adsorbent for protein chromatography: supermacroporous monolithic cryogel embedded with Cu2+-attached sporopollenin particles. J Chromatogr A 1218(3):484–490. https://doi.org/10.1016/j.chroma.2010.11.074

    Article  CAS  PubMed  Google Scholar 

  19. Yao K, Yun J, Shen S, Wang L, He X, Yu X (2006) Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. J Chromatogr A 1109(1):103–110. https://doi.org/10.1016/j.chroma.2006.01.014

    Article  CAS  PubMed  Google Scholar 

  20. Can HK, Gürbüz F, Odabaşı M (2019) Partial characterization of cyanobacterial extracellular polymeric substances for aquatic ecosystems. Aquat Ecol. https://doi.org/10.1007/s10452-019-09699-z

    Article  Google Scholar 

  21. Baran T, Menteş A, Arslan H (2015) Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(II) complexes. Int J Biol Macromol 72:94–103

    Article  CAS  Google Scholar 

  22. Derazshamshir A, Ergün B, Peşint G, Odabaşı M (2008) Preparation of Zn2+-chelated poly(HEMA-MAH) cryogel for affinity purification of chicken egg lysozyme. J Appl Polym Sci 109(5):2905–2913. https://doi.org/10.1002/app.28345

    Article  CAS  Google Scholar 

  23. Chaurin V, Constable EC, Housecroft CE (2006) What is the coordination number of copper(II) in metallosupramolecular chemistry? New J Chem 30(12):1740–1744

    Article  CAS  Google Scholar 

  24. Sun J, Su Y, Rao S, Yang Y (2011) Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles. J Chromatogr B 879(23):2194–2200. https://doi.org/10.1016/j.jchromb.2011.05.052

    Article  CAS  Google Scholar 

  25. Acet Ö, Önal B, Sanz R, Sanz-Pérez ES, Erdönmez D, Odabaşi M (2018) Preparation of a new chromatographic media and assessment of some kinetic and interaction parameters for lysozyme. J Mol Liq. https://doi.org/10.1016/j.molliq.2018.12.037

    Article  Google Scholar 

  26. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  27. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  28. Li Z, Cao M, Zhang W, Liu L, Wang J, Ge W, Yuan Y, Yue T, Li R, William WY (2014) Affinity adsorption of lysozyme with Reactive Red 120 modified magnetic chitosan microspheres. Food Chem 145:749–755. https://doi.org/10.1016/j.foodchem.2013.08.104

    Article  CAS  PubMed  Google Scholar 

  29. Wolman FJ, Copello GJ, Mebert AM, Targovnik AM, Miranda MV, Del Cañizo AAN, Díaz LE, Cascone O (2010) Egg white lysozyme purification with a chitin–silica-based affinity chromatographic matrix. Eur Food Res Technol 231(2):181–188. https://doi.org/10.1007/s00217-010-1263-1

    Article  CAS  Google Scholar 

  30. Öncel Ş, Uzun L, Garipcan B, Denizli A (2005) Synthesis of phenylalanine-containing hydrophobic beads for lysozyme adsorption. Ind Eng Chem Res 44(18):7049–7056

    Article  Google Scholar 

  31. Zhang G, Cao Q, Li N, Li K, Liu F (2011) Tris(hydroxymethyl) aminomethane-modified magnetic microspheres for rapid affinity purification of lysozyme. Talanta 83(5):1515–1520. https://doi.org/10.1016/j.talanta.2010.11.040

    Article  CAS  PubMed  Google Scholar 

  32. Kaya M, Odabasi M, Mujtaba M, Sen M, Bulut E, Akyuz B (2016) Novel three-dimensional cellulose produced from trunk of Astragalus gummifer (Fabaceae) tested for protein adsorption performance. Mater Sci Eng C 62:144–151. https://doi.org/10.1016/j.msec.2016.01.047

    Article  CAS  Google Scholar 

  33. Su Y-l, Li C (2008) Controlled adsorption of bovine serum albumin on poly(acrylonitrile)-based zwitterionic membranes. React Funct Polym 68(1):161–168. https://doi.org/10.1016/j.reactfunctpolym.2007.10.001

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support of The Scientific and Technological Research Council of Turkey (TUBITAK) (Project Number: 113Z296) and Aksaray University Scientific Research Projects Coordination (Project Number: 2015-80), Turkey.

Author information

Authors and Affiliations

Authors

Contributions

O-carboxymethyl chitosan (O-CMCS) Schiff base granules were prepared by AM. The experiments were carried out by ÖA. The manuscript was written by MO with the support of AM.

Corresponding author

Correspondence to Mehmet Odabaşı.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acet, Ö., Menteş, A. & Odabaşı, M. Assessment of a new dual effective combo polymer structure for separation of lysozyme from hen egg white. Polym. Bull. 77, 4679–4695 (2020). https://doi.org/10.1007/s00289-019-02959-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02959-w

Keywords

Navigation