Skip to main content
Log in

Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work refers to the synthesis of a series of novel chlorinated poly(ɛ-caprolactone) (PCL) for further functionalization of PCL. For this aim, chlorine gas was passed through into the chloroform solution to obtain chlorinated polycaprolactone. The chlorine contents in chlorinated PCL were between 0.9 and 1.6 mol%. The molecular weights of the polymers (M n) changed from 4853 to 9497 g/mol. As the amount of passing chlorine gas increases, the molecular weight of the chlorinated PCL was found to decrease. Pendant chloride groups of PCL were reacted with sodium azide to prepare PCL with pendant azide groups (PCL-N3). Poly-(ethylene glycol) methyl ether (mPEG) was reacted with propargyl chloride to achieve alkynyl mPEG (mPEG-alkyn). Click reaction was then carried out by the reaction between PCL-N3 and mPEG-alkyn to obtain PCL-g-PEG comb-type amphiphilic graft copolymer. Interestingly, SEM images of the PCL-g-PEG comb-type amphiphilic graft copolymers showed the highly microporous structure. The resulting products were characterized by 1H NMR, FT-IR, gel-permeation chromatography, SEM, surface tension, contact angle and water uptake measurements, differential scanning calorimeter and thermogravimetric analyses techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    Article  CAS  Google Scholar 

  2. Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) Anionic polymerization: high vacuum techniques. J Polym Sci A Polym Chem 38:3211–3234

    Article  CAS  Google Scholar 

  3. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  4. Hazer B (1990) Cationic polymerization of tetrahydrofuran initiated by difunctional initiators. Synthesis of block copolymers. Eur Polym J 26:1167–1170

    Article  CAS  Google Scholar 

  5. Ito S, Goseki R, Manners I, Ishizone T, Hirao A (2015) Successive synthesis of multiarmed and multicomponent star-branched polymers by new iterative methodology based on linking reaction between block copolymer in-chain anion and α-phenylacrylate-functionalized polymer. Macromol Chem Phys 216:1523–1533

    Article  CAS  Google Scholar 

  6. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3746

    Article  CAS  Google Scholar 

  7. Kim JG, Cowman CD, LaPointe AM, Wiesner U, Coates GW (2011) Tailored living block copolymerization: multiblock Poly(cyclohexene carbonate)s with sequence control. Macromolecules 44:1110–1113

    Article  CAS  Google Scholar 

  8. Lodge TP (2003) Block copolymers: past successes and future challenges. Macromol Chem Phys 204:265–273

    Article  CAS  Google Scholar 

  9. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  CAS  Google Scholar 

  10. Ruzette AV, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19–31

    Article  CAS  Google Scholar 

  11. Yildiz U, Hazer B, Tauer K (2012) Tailoring polymer architectures with macromonomer azoinitiators. Polym Chem 3:1107–1118

    Article  CAS  Google Scholar 

  12. Reddy KR, Sina BC, Ryua KS, Kimb JC, Chungc H, Leea Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synt Met 159:595–603

    Article  CAS  Google Scholar 

  13. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhancedphotocatalysis. Appl Catal A-Gen 489:1–16

    Article  CAS  Google Scholar 

  14. Lee H, Zeng F, Dunne M, Allen C (2005) Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules 6:3119–3128

    Article  CAS  Google Scholar 

  15. Dao TD, Oh KM, Choi JT, Hi Lee, Jeong HM, Kim YS, Park SJ, Kim BK (2012) The effect of oxidation on properties of graphene and its polycaprolactone nanocomposites. J Nanosci Nanotechnol 12:8420–8430

    Article  CAS  Google Scholar 

  16. Reddy KR, Lee KP, Kim JY, Lee Y (2008) Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2—polyaniline core-shell composite nanoparticles: physical properties. J Nanosci Nanotechnol 8:5632–5639

    Article  CAS  Google Scholar 

  17. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C Mater Biol Appl 32:637–647

    Article  CAS  Google Scholar 

  18. Kılıçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas E (2011) Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44:310–320

    Article  Google Scholar 

  19. Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, Tian Bi Yang H, He H (2014) PEG–PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release 183:77–86

    Article  CAS  Google Scholar 

  20. Carfì Pavia F, La Carrubba V, Brucato V, Palumbo FS, Giammona G (2014) Synthesis, characterization and foaming of PHEA–PLLA, a new graft copolymer for biomedical engineering. Mater Sci Eng C Mater Biol Appl 41:301–308

    Article  Google Scholar 

  21. Hazer DB, Hazer B, Dinçer N (2011) Soft tissue response to the presence of polypropylene-G-poly(ethylene glycol) comb-type graft copolymers containing gold nanoparticles. J Biomed Biotechnol 2011:956169-1–956169-7. doi:10.1155/2011/956169

  22. Li Z, Tan BH (2014) Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Mater Sci Eng C Mater Biol Appl 45:620–634

    Article  CAS  Google Scholar 

  23. Lutz PJ, Peruch F (2012) Graft copolymers and comb-shaped homopolymers. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 511–542

    Chapter  Google Scholar 

  24. Maksym-Bębenek P, Biela T, Neugebauer D (2014) Synthesis and investigation of monomodal hydroxy-functionalized PEG methacrylate based copolymers with high polymerization degrees. Modification by “grafting from”. React Funct Polym 82:33–40

    Article  Google Scholar 

  25. Williams RJ, Pitto-Barry A, Kirby N, Dove AP, O’Reilly RK (2016) Cyclic Graft copolymer unimolecular micelles: effects of cyclization on particle morphology and thermoresponsive behavior. Macromolecules 49:2802–2813

    Article  CAS  Google Scholar 

  26. Golas PL, Matyjaszewski K (2010) Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev 39:1338–1354

    Article  CAS  Google Scholar 

  27. Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ (2009) Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev 109:5620–5686

    Article  CAS  Google Scholar 

  28. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  29. Mansfeld U, Pietsch C, Hoogenboom R, Becer CR, Schubert US (2010) Clickable initiators, monomers and polymers in controlled radical polymerizations—a prospective combination in polymer science. Polym Chem 1:1560–1598

    Article  CAS  Google Scholar 

  30. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev 109:6275–6540

    Article  CAS  Google Scholar 

  31. Sumerlin BS, Vogt AP (2010) Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules 43:1–13

    Article  CAS  Google Scholar 

  32. Dodds DR, Gross RA (2007) Chemicals from Biomass. Science 318:1250–1251

    Article  CAS  Google Scholar 

  33. Mecking S (2004) Nature or petrochemistry? biologically degradable materials. Angew Chem Int Ed 43:1078–1085

    Article  CAS  Google Scholar 

  34. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486

    Article  CAS  Google Scholar 

  35. Hazer B (2010) Amphiphilic Poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci. 2010:8. doi:10.1155/2010/423460

    Article  Google Scholar 

  36. Dag A, Durmaz H, Demir E, Hizal G, Tunca U (2008) Heterograft copolymers via double click reactions using one-pot technique. J Polym Sci A Polym Chem 46:6969–6977

    Article  CAS  Google Scholar 

  37. Gungor FS, Kiskan B (2014) One-pot synthesis of poly(triazole-graft-caprolactone) via ring-opening polymerization combined with click chemistry as a novel strategy for graft copolymers. React Funct Polym 75:51–55

    Article  CAS  Google Scholar 

  38. Liang L, Astruc D (2011) The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. Coord Chem Rev 255:2933–2945

    Article  CAS  Google Scholar 

  39. Wolinsky JB, Yohe ST, Colson YL, Grinstaff MW (2012) Functionalized hydrophobic poly(glycerol-co-ε-caprolactone) depots for controlled drug release. Biomacromolecules 13:406–411

    Article  CAS  Google Scholar 

  40. Zhao P, Yan Y, Feng X, Liu L, Wang C, Chen Y (2012) Highly efficient synthesis of polymer brushes with PEO and PCL as side chains via click chemistry. Polymer 53:1992–2000

    Article  CAS  Google Scholar 

  41. Cai T, Li M, Neoh KG, Kang ET (2013) Surface-functionalizable membranes of polycaprolactone-click-hyperbranched polyglycerol copolymers from combined atom transfer radical polymerization, ring-opening polymerization and click chemistry. J Mater Chem B 1:1304–1315

    Article  CAS  Google Scholar 

  42. Erdemli Ö, Usanmaz A, Keskin D, Tezcaner A (2014) Colloids Surf B 117:487–496

    Article  CAS  Google Scholar 

  43. Yang R, Meng F, Ma S, Huang F, Liu H, Zhong Z (2011) Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) Block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel. Biomacromolecules 12:3047–3055

    Article  CAS  Google Scholar 

  44. Yin G, Chen G, Zhou Z, Li Q (2015) Modification of PEG-b-PCL block copolymer with high melting temperature by the enhancement of POSS crystal and ordered phase structure. RSC Adv 5:33356–33363

    Article  CAS  Google Scholar 

  45. Zhou S, Deng X, Yang H (2003) Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials 24:3563–3570

    Article  CAS  Google Scholar 

  46. Şanal T, Oruç O, Öztürk T, Hazer B (2015) Synthesis of pH- and thermo-responsive poly (ε-caprolactone-b-4-vinyl benzyl-g-dimethyl amino ethyl methacrylate) brush type graft copolymers via RAFT polymerization. J Polym Res 22:1–12

    Article  Google Scholar 

  47. Toraman T, Hazer B (2014) Synthesis and characterization of the novel thermoresponsive conjugates based on poly(3-hydroxy alkanoates). J Polym Environ 22:159–166

    Article  CAS  Google Scholar 

  48. Balcı M, Allı A, Hazer B, Güven O, Cavicchi K, Cakmak M (2010) Synthesis and characterization of novel comb-type amphiphilic graft copolymers containing polypropylene and polyethylene glycol. Polym Bull 64:691–705

    Article  Google Scholar 

  49. Wu B, Lenz RW, Hazer B (1999) Polymerization of methyl methacrylate and its copolymerization with ε-caprolactone catalyzed by isobutylalumoxane catalyst. Macromolecules 32:6856–6859

    Article  CAS  Google Scholar 

  50. Hazer B (2015) Simple synthesis of amphiphilic poly(3-hydroxy alkanoate)s with pendant hydroxyl and carboxylic groups via thiol-ene photo click reactions. Polym Degrad Stabıl 119:159–166

    Article  CAS  Google Scholar 

  51. Su RJ, Yang HW, Leu YL, Hua MY, Lee RS (2012) Synthesis and characterization of amphiphilic functional polyesters by ring-opening polymerization and click reaction. React Funct Polym 72:36–44

    Article  CAS  Google Scholar 

  52. Parrish B, Breitenkamp RB, Emrick TJ (2005) PEG- and peptide-grafted aliphatic polyesters by click chemistry. J Am Chem Soc 127:7404–7410

    Article  CAS  Google Scholar 

  53. Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580

    Article  CAS  Google Scholar 

  54. Lin WJ, Flanagan DR, Linhardt RJ (1990) A novel fabrication of poly(ε-caprolactone) microspheres from blends of poly(ε-caprolactone) and poly(ethylene glycol)s. Polymer 40:1731–1735

    Article  Google Scholar 

  55. Arkin AH, Hazer B (2002) Chemical modification of chlorinated microbial polyesters. Biomacromolecules 3:1327–1335

    Article  CAS  Google Scholar 

  56. Arkin AH, Hazer B, Borcakli M (2000) Chlorination of poly(3-hydroxy alkanoates) containing unsaturated side chains. Macromolecules 33:3219–3223

    Article  CAS  Google Scholar 

  57. Moody C, Wheelhouse R (2014) The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals 7:797–838

    Article  CAS  Google Scholar 

  58. Koz B, Kiskan B, Yagci Y (2008) Synthesis and characterization of polyacetylene with side-chain thiophene functionality. Int J Mol Sci 9:383–393

    Article  CAS  Google Scholar 

  59. Lu C, Zhong W (2010) Synthesis of propargyl-terminated heterobifunctional poly(ethylene glycol). Polymers 2:407–417

    Article  CAS  Google Scholar 

  60. Xu LQ, Jiang H, Neoh KG, Kang ET, Fu GD (2012) Poly(dopamine acrylamide)-co-poly(propargyl acrylamide)-modified titanium surfaces for ‘click’ functionalization. Polymer Chemistry 3:920–927

    Article  CAS  Google Scholar 

  61. Li H, Zheng Q, Han C (2010) Click synthesis of podand triazole-linked gold nanoparticles as highly selective and sensitive colorimetric probes for lead(ii) ions. Analyst 135:1360–1364

    Article  CAS  Google Scholar 

  62. Zhai S, Ma Y, Chen Y, Li D, Cao J, Liu Y, Cai M, Xie X, Chen Y, Luo X (2014) Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polym Chem 5:1285–1297

    Article  CAS  Google Scholar 

  63. Reddy KR, Raghu AV, Jeong HM (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym 12:109–118

    Article  CAS  Google Scholar 

  64. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis [methylylidenenitrilo]}diphenol. Polym Bull 60:609–616

    Article  CAS  Google Scholar 

  65. Bock N, Woodruff MA, Hutmacher DW, Dargaville TR (2011) Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 3:131–149

    Article  CAS  Google Scholar 

  66. Yuan J, Shang PS, Wu SH (2001) Effects of polyethylene glycol on morphology, thermomechanical properties and water vapor permeability of cellulose acetate free films. Pharm Technol 25:62–74

    CAS  Google Scholar 

  67. Bahrami AGKSH, Kochaksaraie AS (2012) Morphological, mechanical and biological properties of novel PCL-Cs/PVA multi layer nanofibrous scaffolds. Dig J Nanomater Biostructures 7:1437–1445

    Google Scholar 

Download references

Acknowledgments

This work was supported by Bülent Ecevit University Research Fund (#BEU-2012-10-03-13), TUBITAK (Grant # 211T016) and TUBITAK 2211—A National Scholarship Programme for Timur Şanal (PhD Student).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Hazer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şanal, T., Koçak, İ. & Hazer, B. Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym. Bull. 74, 977–995 (2017). https://doi.org/10.1007/s00289-016-1757-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1757-5

Keywords

Navigation